
D7.7 First Version of the IoT Key
Distribution Prototype

Document Identification
Status Final Due Date 31/10/2019
Version 1.0 Submission Date 31/10/2019

Related WP WP7 Document
Reference

D7.7

Related
Deliverable(s)

D7.1, D7.2, D7.3, D7.5 Dissemination Level(*) PU

Lead Participant Kudelski (KUD) Lead Author Johan Cattin
(Kudelski)

Contributors Kudelski Reviewers Kimmo Järvinen (UH)
Norman Scaife
(WALLIX)

Keywords:
Preliminary Version Demonstrator Report, technical specification, use-case, camera, IoT, crypto API

This document is issued within the frame and for the purpose of the FENTEC project. This project has received funding from the
European Union’s Horizon2020 under Grant Agreement No. 780108. The opinions expressed and arguments employed herein
do not necessarily reflect the official views of the European Commission.

This document and its content are the property of the FENTEC consortium. All rights relevant to this document are determined by
the applicable laws. Access to this document does not grant any right or license on the document or its contents. This document
or its contents are not to be used or treated in any manner inconsistent with the rights or interests of the FENTEC consortium or
the Partners detriment and are not to be disclosed externally without prior written consent from the FENTEC Partners.

Each FENTEC Partner may use this document in conformity with the FENTEC consortium Grant Agreement provisions.

(*) Dissemination level.-PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant
Agreement; CI: Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

Document Information
List of Contributors

Name Partner

Johan Cattin Kudelski
Aymeric Genet Kudelski
Luca Gradassi Kudelski
Daniel Nunes Silva Kudelski
Yolan Romailler Kudelski

Document History
Version Date Change editors Changes

0.1 30/07/2019 Kudelski Creation
0.2 10/10/2019 Kudelski First draft
0.3 22/10/2019 Kudelski Published for internal review
0.4 25/10/2019 Kudelski WALLIX comments addressed
0.5 29/10/2019 Kudelski UH comments addressed
1.0 31/10/2019 Kudelski Version for submission

Quality Control
Role Who (Partner short name) Approval Date

Deliverable Leader Yolan Romailler (KUD) 29/10/2019
Technical Manager Michel Abdalla (ENS) 31/10/2019
Quality Manager Diego Esteban (ATOS) 31/10/2019
Project Coordinator Francisco Gala (ATOS) 31/10/2019

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 1 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information . 1
Table of Contents . 2
List of Figures . 3
List of Tables . 4
List of Acronyms . 5
Executive Summary . 6
1 Introduction . 7

1.1 Structure of the Document . 8
2 IoT Demonstrator . 9

2.1 Introduction . 9
2.2 Cryptographic Protocol . 9
2.3 Platform . 10
2.4 Software . 11
2.5 Demonstrator . 13
2.6 Performance and Security . 14

3 Conclusion . 21
4 Next steps . 22
References . 23

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 2 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

List of Figures

1 Protocol among the components of the FENTEC surveillance camera network prototype. . 10
2 Setup for the IoT surveillance camera use case prototype. 10
3 Group of pictures . 12
4 Motion Detection Flow Chart . 14
5 Video a - First Frame . 15
6 Video a cropped - First Frame . 15
7 Video b - First Frame . 15
8 Video c - First Frame . 15
9 Video a - Motion Vector Norms Sums . 16
10 Video a cropped - Motion Vector Norms Sums . 16
11 Video b - Motion Vector Norms Sums . 16
12 Video c - Motion Vector Norms Sums . 16
13 Video a - Motion Vectors Proportions . 18
14 Video a cropped - Motion Vectors Proportions . 18
15 Video b - Motion Vectors Proportions . 18
16 Video c - Motion Vectors Proportions . 18
17 Video a - Correlation . 20
18 Video a cropped - Correlation . 20
19 Video b - Correlation . 20
20 Video c - Correlation . 20

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 3 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

List of Tables

1 Hardware components and their parameters . 10
2 Current bandwidth usage . 16
3 Current impacts . 17
4 Only I-frames and P-frames motion vector norms . 17
5 Proportions of zero motion vector norms . 18
6 Fixed size SEI NALU . 19
7 Variable size SEI NALU . 19

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 4 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms
Acronym Description
API Application Programming Interface
FE Functional Encryption
FFMPEG Fast Forward Motion Picture Experts Group (file format)
HD High Definition
FHD Full High Definition
IoT Internet of Things
NALU Network Abstraction Layer Unit
SEI Supplemental Enhancement Information
QoS Quality of Service
GOP Group Of Pictures
FPS Frames Per Second

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 5 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This deliverable describes the Kudelski IoT use case prototype at the end of the second year of the
project. The cryptographic protocol of the use-case is described although it was not yet implemented in the
demonstrator. We focused on functionality of the said prototype, and already integrated simulated dummy
calls to the FENTEC library, which should allow for a smooth integration of Functional Encryption.
We thus were able to successfully complete the first phase of the implementation of our prototype on
time, and have a working demonstrator. This document also presents the hardware used to build the
demonstrator, and the software implementation of this first version of the prototype. A section is dedicated
to the performance of our prototype regarding motion detection using motion vectors, as this proved
to be a significant bottleneck when implemented naively. The performance analysis allowed us to find
optimizations, allowing us to significantly save bandwidth, and which should further help us enhance the
encryption and decryption processes in the next phase of our prototype implementation.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 6 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

1 Introduction
Following the Requirements Analysis D3.1 [1] and the Initial Technical Specification D7.1 [2] we now
present the initial work into the development of the Kudelski Security IoT surveillance camera network use
case prototype. Note that the Kudelski use case has been updated to a more realistic scenario but that this
document retains the title of the original scenario. Throughout this deliverable the term “Local Decision
Making” should be read as referring to the main subject of the work and not “Key Distribution” as in the
original version before the use case was ammended. The Initial Technical Specification D7.1 [2], upon
which this work is based, also refers to the ammended use case.
The goals of this document are to describe, for the Kudelski Security use case:

• how the prerequisites for prototype development have been met,

• the current state of development of the use case in terms of functionality, and

• a preliminary analysis of the performance of the prototype.

The Initial Technical Specification D7.1 [2] defined the required functionality for the prototype and how
to achieve that using existing tools plus cryptographic protocols defined by the academic partners and
the FENTEC library implemented by XLAB. There are also some tentative performance targets but since
these proved to be difficult to quantify they are only general guidelines.
The overall goal of this phase of the project (Task 7.2) is to produce a working prototype in order to assess
the suitability and efficacy of the cryptographic protocol and its ability to meet the requirements of the
application. During the development of the prototype, it appeared that the computational power needed for
motion detection was much greater that what the cryptographic part should require. Therefore we choose
to shift the implementation of functional encryption to the next phase of the project and focus our efforts
on motion detection and video handling. To this end, in this document, we concentrate on describing how
our work meets the performance and functionality requirements. This will then lead into the final phase of
the project where we concentrate more upon the cryptographic and security aspects of the use case while
maintaining the functional requirements.
This deliverable is produced concurrently with the development of the prototypes for the other two use
cases and leads into the reports on the final prototypes plus reports on performance and security:

• D7.3 First version of the truly anonymous data collection prototype (M22)

• D7.4 Final version of the truly anonymous data collection prototype (M33)

• D7.5 First version of the privacy enhanced digital currency prototype (M22)

• D7.6 Final version of the privacy enhanced digital currency prototype (M33)

• D7.8 Final version of the IoT key distribution prototype (M33)

• D7.9 First test report of the FENTEC prototypes (M23)

• D7.11 Performance report for FENTEC prototypes after first cycle (M24)

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 7 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

1.1 Structure of the Document
Section 2 presents the current state of the IoT use case.

Section 2.1 introduces the IoT prototype.
Section 2.2 describes the cryptographic protocol used for the prototype.
Section 2.3 gives a brief description of the platform which has been developed.
Section 2.4 outlines the structure of the software and the method of operation.
Section 2.5 summarizes what the demonstrator version of the use case application attempts to prove.
Section 2.6 explains how the prototype matches the specification and gives some brief notes on its

current performance.

Section 3 concludes with a brief statement about conformance with project goals.

Section 4 gives some brief indications for the next steps in the project.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 8 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

2 IoT Demonstrator

2.1 Introduction
In the modern days, with the increasing progress of computer performance, developing devices that interact
with each other without requiring a human’s input becomes more and more desirable. This is known as
the world of IoT which currently witnesses a growing popularity. In such networks, many small devices,
such as everyday objects, are interconnected in order to be controlled remotely.
Because a ciphertext usually requires to be entirely decrypted to be analysed, creating local decision
making in an IoT network requires propagating a secret key over an entire chain of devices. This spreads
the exposure of the key, makes the whole encryption chain susceptible to the weakest link, and can even
cause privacy issues. A cryptographic primitive that solves this problem is functional encryption which,
in addition to the common encryption and decryption capabilities, also provides the result of a function
evaluated on a plaintext to certain participants. As a result, functional encryption enables making decisions
depending on a function of the plaintext while keeping the ciphertext encrypted.
A typical application of functional encryption with IoT devices is a surveillance camera network. In this
use case, a number of cameras interact with a (different) number of gateways in order to raise alarms to a
host if movement is detected on the video. This scenario allows the cryptographic workload to be lifted
from the cameras and the host, and distributed among the gateways. For this purpose, the video stream is
fully encrypted and sent alongside a functionally encrypted stream of data corresponding to the motion on
the video (namely, the motion vectors).
The current document describes the approach used to create a prototype of the different components of the
network (i.e. the camera, the gateways, and the host). The software used to extract the motion vectors and
detect movement is a modified version of FFmpeg according to the specifications of the use case described
in Section 2.4. In order to emulate the components, programmable boards and a generic camera were
setup as described in Section 2.3.

2.2 Cryptographic Protocol
Using functional encryption on raw video streams is a practically impossible task. Video streams are
encoded using compression methods that scramble the information and, combined with the encoding itself,
make it almost impossible to design an encryption scheme that would allow us to retrieve information about
movement without leaking the whole video.
The IoT use case takes advantage of a workaround: embedding a list of motion vectors in the metadata of
the stream. The idea is to extract the motion vectors of the video, encrypt them using some FE function,
and send them along with the original video stream.
In a real world application an FE scheme would be used for motion vectors transmission, and classical
end-to-end encryption for the video stream. At this phase of the prototype, no cryptographic functionality
has been implemented. In the future, the IoT devices will handle two kind of encryption:

• The Functional Encryption of the motion vectors using a secret FE encryption key, and

• A end-to-end encrpytion of the video stream using non-FE encryption scheme with some symmetric
secret key.

The gateway systems will not be involved in the end-to-end encryption of the video stream. They will only
own an FE extraction key that allows them to perform basic motion detection without accessing the the
raw motion vectors nor the video stream. The backend system will share the secret encryption key with
the IoT devices and thus be able to decrypt the video stream.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 9 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

The protocol describing the different interactions between an IoT device and a gateway is shown in Figure 1.

Camera MVs extraction

Encrypt with key Sum MVs

drop stream
on still image

video
stream

MVs

video stream

encrypted MVs

video
stream

IoT device

Gateway

Figure 1: Protocol among the components of the FENTEC surveillance camera network prototype.

2.3 Platform
The three different components involved in the use case were emulated as follows:

• The camera is a Logitech C922 PRO.

• The encryptor is a Raspberry Pi 4 Model B 2GB RAM.

• The local decision maker is a Raspberry Pi 4 Model B 2GB RAM.

• The decryptor is a general-purpose laptop.

All the above items were interconnected according to Figure 2. All devices must run the Fentec specific
version of FFmpeg.

Camera
Logitech C922 pro

Encryptor
Raspberry Pi

Gateway
Raspberry Pi

Decryptor
MacBook Pro

USB Wi-Fi Wi-Fi

Figure 2: Setup for the IoT surveillance camera use case prototype.

Camera Logitech C922 PRO.
1920x1080 pixels at 30fps in mjpeg format

Encryptor Raspberry Pi 4 Model B 2GB RAM.
Dummy encryption key, amount of motion vectors to carry.

Local decision maker Raspberry Pi 4 Model B 2GB RAM.
Motion detection threshold.

Decryptor MacBook Pro
No parameters.

Table 1: Hardware components and their parameters

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 10 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

2.4 Software
This section details the software choices made to fulfil the use case requirements.
Requirements

1. Extract data related to motion on a provided video stream.

2. Encrypt the motion-related data with functional encryption in such a way that a motion detection
function can be queried on the ciphertext.

3. Encrypt a stream of video with symmetric encryption.

Overview
To fulfil all of the above criteria, the software for the prototype was based on FFmpeg, which is a vast
free and open-source software suite to handle multimedia content. It offers the possibility to modify video
and audio streams by adjusting default parameters or by applying filters, which can be either provided by
FFmpeg or implemented by the user. Therefore, FFmpeg is useful to transcode the camera video (i.e. set
the desired codec, GOP, frame-rate, etc.) as well as for using the custom filters.

2.4.1 FFmpeg

FFmpeg helps us to manipulate motion vectors contained in H.264 video stream for encoding purposes.
The idea is to correlate the low-level displacements of pixels described by motion vectors with the high-
level interpretation humans have of motion. This will be leveraged using custom filters implementing
functional encryption of extracted motion vectors and full encryption of video stream.
A motion vector represents the displacement between two frames of a macroblock, which is a continuous
block of pixels in a frame. Such a vector is an essential aspect of video compression, as consecutive frames
can now be drawn predictively, i.e., according to a reference frame instead of permanently encoding the
whole frames.
Modifications summary

• Captured video is a H.264 FHD 30 FPS transcoded video stream with GOP 30.

• A custom bitstream filter h264_fe_mv_crypt_bsf which encrypts the motion vectors with func-
tional encryption and embeds them in the video stream, and encrypts the video stream at NALU
level using symmetric encryption.

• A custom bitstream filter h264_fe_mv_extract_bsf which extracts the encrypted motion vectors
and detects movement according to the functional encryption principles and transmits the frames to
the backend if motion is detected.

• A custom bitstream filter h264_fe_mv_decrypt_bsf which decrypts the received frames.

Note that for now, although the video stream already passes through the different filters, no cryptographic
function is implemented.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 11 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Motion vector data structure
Once extracted the motion vectors go through a basic processing to compute their norms weighted by the
surface of the corresponding macroblock. Then, they are filtered so that we only keep the relevant ones
and carried in small fixed sized SEI NALU, which are interleaved with frame NALU in the video stream.

2.4.2 H.264

The H.264 codec converts frames into three main types :

I-frames also known as intra-coded frames, they have no reference and describe an entire image.

P-frames also known as predicted frames, are usually described with respect to the previous I-frame or
P-frame by the displacement of macroblocks following motion vectors, which is, in general, more
efficient than encoding the entire image. This requires the reference frame to be decoded before.

B-frames also known as bi-directional predicted frames, similarly to P-frames, are usually described with
respect to the closest previous and next I-frame or P-Frame. This requires the reference frames to
be decoded before even if they are displayed after in time.

The GOP acronym stands for Group of pictures. It defines the amount and type of frames between two
full images (I-frames). A GOP of 30 associated with 30 fps allows us to have one full image every second.
The backend laptop is thus able to read a proper video stream at most one second after movement occurs.

Figure 3: Group of pictures

A typical value for our videos’ GOP is :

IBBBPBBBPBBBPBPBBBPBBBPBBBPBBP

We choose the previous parameters so that we get a reasonable frame rate as well as exactly one I-frame
per second. This allows us to decide whether to keep or to cut the video stream second by second and keep
it decodable.

2.4.3 Procedure

Camera
The camera produces a video stream encoded in mjpeg, the native picture size and framerate already
correspond to the requirements (1080p at 30 fps). The IoT device still has to transcode that stream into
a h264 stream, drop the audio part and enforce a GOP of 30. The ultrafast preset ensures that the
Raspberry Pi is able to transcode the stream in real time. For this purpose, the IoT device runs FFmpeg
with the following parameters :

ffmpeg -f v4l2 -framerate 30 -video_size 1920x1080 -c:v mjpeg -i input -an -c:v
h264 -preset ultrafast -g 30

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 12 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Encryptor
The encryptor is in charge of extracting the motion vectors and inserting them in the video stream, using the
export_mvs flag. Instead of carrying all the information of the motion vectors, we only keep their norms
weighted by the surface of the corresponding macroblock. Until now, only P-frames’ motion vectors have
been considered because they seem to be more consistent from frame to frame. The encryption will be
done using the h264_fe_mv_crypt_bsf bit stream filter which applies functional encryption on motion
vectors and packs them into SEI NALUs. For now, the filter packs motion vectors in plaintext into SEI
ALUs. The IoT device runs a second instance of FFmpeg dedicated to the cryptographic part :

ffmpeg -y -flags2 +export_mvs -i input -c:v copy -bsf:v
’h264_fe_mv_crypt=key=key’

Gateway
For each frame NALU, the gateway receives a SEI NALU (containing the motion vector norms of the
corresponding frame) and forwards the frame NALU only when Motion = TRUE according to Figure 4.
The decryption and decision making is handled by the h264_fe_mv_extract bit stream filter, which takes
a decryption key and a threshold number as parameters.

Backend
If motion is detected, the backend device receives the video stream (stripped of motion vectors) and
displays it using an FFmpeg video player. When no more data is transmitted the backend continuously
displays the last decoded frame. As the video stream was not encrypted, there is no need to use the
h264_fe_mv_decrypt bit stream filter.

2.5 Demonstrator
The goal of the demonstrator is to show that functional encryption can be applied on video streams on
the fly by small embedded devices (namely, Raspberry Pi micro-computers) and that it enables us to use
less bandwidth between gateways and backend systems in such a configuration than in a traditional video
surveillance infrastructure.
The cryptographic, video transcoding, and motion detection algorithms should be able to run in near
real time on small CPUs (ARM 4 cores at 1.5 GHz), and motion detection should be accurate enough to
practically detect obvious movements, like a single person walking in front of the camera.

The demonstrator for the Kudelski IoT use case uses the modified version of FFmpeg, installed on each
device. The FFmpeg framework is called by successive shell scripts :

• backend.sh runs on the backend laptop. Listens on port 2000 for any video stream and plays it
directly.

• gateway.sh runs on the gateway Raspberry Pi, listens on port 1500 for any video stream, apply the
h264_fe_mv_extract bit stream filter and forwards the output to the backend.

• camera.sh runs on the encryptor device and handles the crypto part of the IoT device. It listens on
port 12345 for a video stream and apply FENTEC encryption on it. The output is forwarded to the
gateway.

• webcam.sh also runs on the encryptor and communicates with the camera device. It specifies what
format should the camera outputs, and transcode it to an h264 stream. It forwards the output on port
12345 locally.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 13 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Figure 4: Motion Detection Flow Chart

2.6 Performance and Security
One of the goals of the IoT use case prototype is to reduce the bandwidth usage between the backend device
and the decision-making gateway. The main challenge posed by the current design presented in Figure 1
is the bandwidth usage overhead between the IoT device and the gateway caused the presence of the
encrypted MVs. As motion vectors have to be in cleartext before being encrypted, to be able to leverage
the functional encryption scheme correctly, there is no possibility to compress them before the encryption
step. But as the output of the encryption is hardly distinguishable from random noise, attempting to apply
a compression algorithm on them after the encryption would not reduce the amount of transmitted data.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 14 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

2.6.1 Benchmarking dataset

We used 4 videos for this project. They all simulate video surveillance streams collected from car parks.
“Video a cropped” is the same as “video a” except that we only kept the right bottom corner, where most
motion happens.

Figure 5: Video a - First Frame Figure 6: Video a cropped - First Frame

Figure 7: Video b - First Frame Figure 8: Video c - First Frame

Encoding
All the videos have been transcoded with the following properties :

• FHD H.264 video stream

• no audio stream

• 30 FPS

• GOP 30

• 2000 ± 100 kb/s bitrate

This can be reproduced with any other video using the following FFmpeg command :

./ffmpeg -i in -c:v libx264 -an -s 1920x1080 -r 30 -g 30 -b:v 2000k -bt 100k out

2.6.2 Motion detection

The first implementation used a constant threshold parameter and allowed us to distinguish moving frames
from still frames. Nevertheless, it is hard to find the ideal threshold, which would detect smaller motions
like a person walking when the video stream is particularly noisy (i.e. strong wind and moving tree leaves)
and is also showing big vehicles moving. It must be mentioned that this implementation transmits or drops
frames according to the state computed from the previous GOP so it may suffer from a one second delay
in the motion detection.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 15 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Histograms of the sums of motion vector norms
Here are the motion vector norms sums per second histograms for our dataset. The threshold (in blue) is
set by hand analysing motion in the video. Red bars above the threshold trigger the motion detection while
green ones do not.

Figure 9: Video a - Motion Vector Norms
Sums

Figure 10: Video a cropped - Motion Vec-
tor Norms Sums

Figure 11: Video b -Motion Vector Norms
Sums

Figure 12: Video c -Motion Vector Norms
Sums

Issue
The main point shown in Table 2 and Table 3 is that the carried fixed length SEI NALU requires a lot of
bandwidth between the camera and the gateway. As expected, we observe an overall gain of bandwidth
even if it essentially happens between the gateway and the backend.

Video Duration Initial File Size Camera-Gateway Data Gateway-Backend Data
a 41 s 11 MB 98 MB 7 MB
a cropped 41 s 11 MB 98 MB 7 MB
b 55 s 15 MB 127 MB 9 MB
c 153 s 40 MB 354 MB 24 MB

Table 2: Current bandwidth usage

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 16 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Video Camera-Gateway Overload Camera-Backend Gain Discards
a + 790 % - 20 % 40 %
a cropped + 790 % - 20 % 40 %
b + 750 % - 40 % 35 %
c + 785 % - 40 % 40 %

Table 3: Current impacts

2.6.3 Include SEI NALU only for I-frames and P-frames

The first step of optimization is to drop unexploited SEI NALU since motion detection seems to work
reasonably well without considering B-frame motion vectors. Adversaries should not be able to take
advantage by deducing the GOP. I-frames do not have associated motion vectors but we still need to
include SEI NALU in order to identify them. If this technique is viable then further changes can be made
so that I-frames SEI NALU only carry their type and no extra space for their inexistent motion vectors.

Results
The bandwidth usage is better than with our current implementation even it is still not satisfying to use
three time the bandwidth according to Table 4 compared to simply stream the video.

Video Camera-Gateway Overload
a + 230 %
a cropped + 230 %
b + 230 %
c + 240 %

Table 4: Only I-frames and P-frames motion vector norms

This uses exactly the same references as our current implementation, then the motion detection performs
exactly the same.

2.6.4 Smaller fixed size SEI NALU

This option profits from the fact that most of the motion vectors have negligible impact for the final motion
detection. Assuming this, we can choose a smaller fixed size data structure to carry filtered motion vectors,
whose norm is equal to zero to save bandwidth between the camera and the gateway. This is an extension to
the previous improvement. Using fixed size SEI NALU, this implies that due to variance and outliers that
we will have to discard motion vector norms even if they are non-zero. Choosing which motion vectors
we keep also becomes a challenge in order not to take a biased sample of them.

Results
According to Table 5, most of the motion vectors are irrelevant. Nevertheless, we should notice that this
depends upon the type of video. Our videos a, b and c capture wide and far fields, so, motion vectors are
usually small. On the other hand, video a cropped focuses on the motion region, as a consequence, motion
vectors have bigger norms and happen more often. This would be a biased scenario assuming that most of
surveillance cameras capture the wider field possible.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 17 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Video Minimum proportion of zero |MV| Median proportion of zero |MV|
a 74 % 91 %
a cropped 36 % 82 %
b 51 % 94 %
c 38 % 91 %

Table 5: Proportions of zero motion vector norms

The following plots show the proportion of zero and non-zero motion vector norms for all the P-frames
of each video. The red line corresponds to the minimum proportion of zero motion vector norms and the
green one refers to the median proportion of zero motion vector norms.

Figure 13: Video a - Motion Vectors Pro-
portions

Figure 14: Video a cropped - Motion Vec-
tors Proportions

Figure 15: Video b - Motion Vectors Pro-
portions

Figure 16: Video c - Motion Vectors Pro-
portions

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 18 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

For this technique, we carry 2% of the maximum number of motion vectors (and not the effective number of
motion vectors available in each frame), which is close to the median proportion of zero motion vectors for
our videos. Notice that this parameter should be tuned specifically for each video and cannot be predicted.
The motion vector norms array is sorted in decreasing order and we keep the largest values. This results
in a noticeable improvement as shown in Table 6.

Video Camera-Gateway Overload
a + 10 %
a cropped + 20 %
b + 30 %
c + 5 %

Table 6: Fixed size SEI NALU

These numbers depend on howmany motion vectors were initially available in the video and the maximum
number of motion vectors.
As we may discard motion vector values, then the threshold may need to be downscaled. Even if we
discard some motion vector norms, we are able to achieve similar results compared to other techniques.
This means accuracy of the detection is not an issue.

2.6.5 Variable size SEI NALU

Finally, we evaluate the most flexible technique: carrying all the non-zero motion vector norms. By doing
this, all the information we need to perform motion detection is available and we reduce the bandwidth
usage by the greatest amount. We will pay special attention to see if the size of the SEI NALU is related
to the amount of detected motion. The advantage of using variable size SEI NALU is that we do not lose
any information and we do not carry any useless information.

Results
As shown in Table 7, using variable size SEI NALU leads to a bandwidth overhead of at most 20% on the
benchmarking dataset. This is how the current version of the prototype is implemented.

Video Camera-Gateway Overload
a + 10 %
a cropped + 20 %
b + 2 %
c + 6 %

Table 7: Variable size SEI NALU

2.6.6 Issue

As we are only keeping the non-zero motion vector norms, the SEI NALU of these may be correlated to
their sum. This is undesirable since any adversary could deduce the presence of motion in the video stream
just by looking at the SEI NALU size. The following tables show the sum of motion vector norms and the
amount of motion vector norms per GOP. We observe a slight tendency the sum to be greater when the
SEI NALU are bigger. The threshold is drawn in blue on the plots. An adversary could, for each video,
choose a threshold on the SEI size that would directly correlate to the motion vectors number and be able to

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 19 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

Figure 17: Video a - Correlation Figure 18: Video a cropped - Correlation

Figure 19: Video b - Correlation Figure 20: Video c - Correlation

determine quite accurately when movement occurs. The idea of variable size SEI NALU should therefore
be rejected.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 20 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

3 Conclusion
In this document, we presented the first version of Kudelski’s IoT Video Surveillance use case. For this
initial version, we concentrated upon functionality and solving the problems arising from our detection
method, namely the large bandwidth increase caused by the presence of the encrypted motion vectors
embedded in the video stream.
We have a demonstrator for the prototype which can be used to show how motion detection can be
performed using the sum of the motion vector, which can be computed using an inner product functional
encryption scheme evaluated at the gateway level.
We are currently able to demonstrate the full pipeline of our prototype, from a camera to a backend system,
and to perform the required local decision making at the gateway level, which enables us to save bandwidth
between our gateway and our backend system as we wanted.
We also addressed the performance problems we faced, discussed extensively the bandwidth usage issue
of our current implementation of the FENTEC prototype and proposed multiple methods to reduce the
bandwidth usage. It appears that dropping the B-frames SEI NALU provides a good improvement with
limited side effects. Then, we figured out that most of the motion vectors norms in the video stream are
useless since their norms are zero and therefore do not change the motion detection results. Since the
variable size SEI NALU leak information, the best trade-off is to set smaller fixed size SEI NALU. Even if
they they may discard non-zero motion vectors norms, they are almost as precise as the original technique
by adjusting the gateway threshold.
We also want to stress here that reducing the number of motion vectors that needs to be encrypted should
dramatically increase the encryption performance, which we plan to address in the next phase of our
prototype development.
In summary, the prototype is at the stage expected for this phase of the FENTEC project. We have a
working prototype with which we can move forward and develop to use functional encryption in the later
stages of the project.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 21 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

4 Next steps
Now that motion detection works on the IoT suveillance camera prototype, we will focus our work on the
cryptographic part of the prototype. The next step will be to implement real functional encryption on
motion vectors. The motion detection will have to be slightly adapted, as the current FE algorithms does
not permit simply summing the norm of encrypted vectors. Once FE is fully implemented we will be able
to apply end-to-end encryption on the video stream, thus enforcing security on the prototype.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 22 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

References

[1] FENTEC. D3.1 technical requirement report analysis. Technical report, European Commission, 2018.

[2] FENTEC. D7.1 preliminary specification of fentec prototypes. Technical report, European Commis-
sion, 2018.

Document name: D7.7 First Version of the IoT Key Distribution Prototype Page: 23 of 23
Reference: D7.7 Dissemination: PU Version: 1.0 Status: Final

	Document Information
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive Summary
	Introduction
	Structure of the Document

	IoT Demonstrator
	Introduction
	Cryptographic Protocol
	Platform
	Software
	Demonstrator
	Performance and Security

	Conclusion
	Next steps
	References

