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Executive Summary

In this deliverable D6.5 “Performance Analyses 2”, we discuss the performance of the two functional
encryption libraries developed in FENTEC. We compare both libraries, GoFE and CiFEr, as well as the
performance of different schemes between each other. We summarize the optimizations that have been
implemented in the first half of the last year of the project. Additionally, we provide an evaluation of
the integration of GoFE into two real-world scenarios and compare the performance of the functional
encryption approach against the homomorphic encryption approach. We demonstrate that functional
encryption is practical and can be used in real-world applications. This document is an extension of D6.4
“Performance Analyses 1”, where the performance of the initial set of implemented schemes has been
discussed.
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1 Introduction

The main objective of Work Package 6 is to implement state-of-the-art functional encryption libraries.
Deliverable D6.3 “Final Functional Encryption Toolset API” provides an overview of the two functional
encryption libraries – GoFE, written in the Go programming language; and CiFEr, written in the C
programming language. Both libraries offers an API to state-of-the-art inner-product, quadratic, and
attribute-based encryption schemes. This deliverable presents the performance evaluation of the two
libraries.

1.1 Purpose of the Document

The goal of this deliverable is to present the benchmark results for GoFE and CiFEr. Thus, the reader can
compare the differences between the two libraries, as well as the differences between the various schemes
(for example, GoFE and CiFEr provide an implementation of various inner-product schemes).

The document can serve as a helping point for choosing between different schemes –while some schemes ex-
cel for example at the encryption phase, some others are far more performant at the decryption phase.

The performance results and more comparisons with a homomorphic encryption approach have been
provided in the paper that has been accepted at the ESORICS [1] conference.

1.2 Structure of the Document

This deliverable is structured as follows. Section 2 provides the benchmark results for GoFE and CiFEr
libraries. Section 3 describes performance optimizations for GoFE and CiFEr libraries. Section 4 discusses
the performance of the GoFE library in the privacy-enhanced health analysis use case and in the machine
learning application. The deliverable concludes with a summary and an outlook in Section 5.
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2 Benchmarks

In this section, we give a performance evaluation of implemented schemes. We compare the benefits
and downsides of the schemes and discuss their practicality for the possible uses. The schemes are
implemented with the goal of being flexible and having an easy-to-use API. For this reason, the schemes
can be initialized with an arbitrary level of security and other meta parameters. Since there is no universal
benchmark to compare all the schemes, we evaluate them on various sets of parameters, exposing many
properties of the schemes. All of the benchmarks were performed on an Intel(R) Core(TM) i7-6700 CPU
@ 3.40 GHz.

2.1 Inner-Product Schemes

Recall that an inner-product functional encryption scheme allows the encryption of a vector x ∈ Z` and
the key derivation of a functional key sky for a vector y, where the vectors x and y are totally independent.
The decryption of the ciphertext of x under the functional key sky only reveals the inner-product x · y and
nothing more.

Each inner-product scheme comprises five parts: setup, master key generation, encryption, functional
(inner-product) key derivation, and decryption. In what follows, we give performance results of inner-
product schemes based on different security assumptions.

We demonstrate the efficiency of the schemes depending on the parameters ` (length of the encrypted
vectors) and b (upper bound for the coordinates of the inner-product vectors). All the results are averages
of many runs on different random inputs. Note that the implementation of the schemes enables a user to
choose the level of security. However, by increasing the level of security, the performance of the scheme
is lowered. In the benchmarks, we tested all the schemes with parameters chosen to be considered safe by
various security standards (2048-bit security).

In Tables 1, 2, 3, 4 and Figures 1, 2, 3, 4, we compare the operations across different schemes with fixed
b = 1000 and increasing vector length `.

` Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.1549 0.0657 12.9523 7.3909 0.0080 0.0041
5 0.5612 0.2938 62.1945 46.2466 0.0402 0.0204

10 1.0600 0.5756 122.7627 74.8795 0.0840 0.0411
20 2.0551 1.1384 266.5059 196.6151 0.1584 0.0849
50 5.0520 2.8410 878.3684 559.6070 0.3954 0.2055
100 10.0916 5.7032 N/A N/A 0.7829 0.4149
200 20.0883 11.3700 N/A N/A 1.5710 0.8190

Table 1: Performance of key generation (in seconds) in inner-product schemes w.r.t. vector length `

The first operation that needs to be executed is the setup operation. In the DDH based schemes as well as
in the Paillier schemes, setup consists of constructing a mathematical group in which the operations will
be performed. The major part of this procedure is finding large safe prime numbers. For all the tests in
this section this is a 2048 bit prime number in the case of DDH and modular arithmetics based schemes,
and two 1024 bit prime numbers in the case of Paillier scheme. It takes on average 72.77s to generate a
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Figure 1: Performance of key generation (in seconds) in inner-product schemes w.r.t. vector length `

` Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 < 0.0001 < 0.0001 0.0001 0.0001 < 0.0001 < 0.0001
5 < 0.0001 < 0.0001 0.0003 0.0001 < 0.0001 < 0.0001
10 < 0.0001 < 0.0001 0.0003 0.0001 < 0.0001 < 0.0001
20 < 0.0001 < 0.0001 0.0007 0.0002 < 0.0001 < 0.0001
50 < 0.0001 < 0.0001 0.0022 0.0002 < 0.0001 < 0.0001

100 < 0.0001 < 0.0001 N/A N/A < 0.0001 < 0.0001
200 0.0001 < 0.0001 N/A N/A 0.0001 < 0.0001

Table 2: Performance of key derivation (in seconds) in inner-product schemes w.r.t. vector length `

` Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.0796 0.0461 4.4148 6.5212 0.0120 0.0062
5 0.2389 0.1389 5.5039 6.8358 0.0276 0.0145

10 0.4367 0.2528 6.3218 7.6660 0.0473 0.0246
20 0.8357 0.4840 7.2797 8.9215 0.0864 0.0464
50 2.0245 1.1751 7.8941 12.6611 0.2048 0.1078
100 4.0087 2.3266 N/A N/A 0.4027 0.2103
200 7.8847 4.6275 N/A N/A 0.7984 0.4141

Table 3: Performance of encryption (in seconds) in inner-product schemes w.r.t. vector length `
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Figure 2: Performance of key derivation (in seconds) in inner-product schemes w.r.t. vector length `

Figure 3: Performance of encryption (in seconds) in inner-product schemes w.r.t. vector length `
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` Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.0348 0.0183 0.0001 0.0118 0.0138 0.0071
5 0.0334 0.0187 0.0002 0.0095 0.0182 0.0127

10 0.0343 0.0194 0.0001 0.0072 0.0196 0.0146
20 0.0358 0.0194 0.0001 0.0076 0.0220 0.0209
50 0.0417 0.0214 0.0015 0.0222 0.0264 0.0259
100 0.0509 0.0257 N/A N/A 0.0342 0.0351
200 0.0715 0.0322 N/A N/A 0.0478 0.0628

Table 4: Performance of decryption (in seconds) in inner-product schemes w.r.t. vector length `

Figure 4: Performance of decryption (in seconds) in inner-product schemes w.r.t. vector length `
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2048 bit safe prime number in GoFE (similar time in CiFEr) and on average 5.49s to generate a product of
two 1024 bits safe prime numbers. In the case of DDH schemes, this can be avoided using precomputed
primes (see Section 3). Note that this cannot be done in the case of Paillier scheme. In the case of the LWE
based schemes, a big uniformly random matrix needs to be generated which takes on average 256.88s in
GoFE.

We can see that the most time-consuming operations are setup and key generation. However, these
operations are executed only once (at the deployment of the system) and do not affect the performance
of the system. Key derivation is executed every time the functional decryption keys needs to be derived,
but the complexity and execution times are negligible. Encryption and decryption operations are linearly
dependent on the parameter `. The performance of encryption and decryption operations varies heavily
– some schemes are highly efficient at the encryption phase, others at the decryption phase. The choice
of the scheme should thus be based on the use case requirements. It can be observed that LWE-based
schemes are practical only for small parameters. Note a slightly slower performance of the Paillier scheme
compared to theDDH-based schemewhich is attributed to the need ofGaussian sampling, and computations
being computed in a bigger group, i.e. modular operations are computationally more expensive. Similar
observations can be made for the encryption process.

In Tables 5, 6, 7, 8 and Figures 5, 6, 7, 8, we compare the operations across different schemes with fixed
` = 1 and increasing b. The setup procedure has in practice an equivalent complexity independently of the
bound.

b Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

100 0.0644 0.0243 5.6113 3.2190 0.0086 0.0042
1000 0.0644 0.0240 12.0923 8.5338 0.0080 0.0042
10000 0.0655 0.0240 12.8254 6.9244 0.0082 0.0043

100000 0.0657 0.0240 15.1264 7.5691 0.0086 0.0041
1000000 0.0641 0.0241 15.8633 8.3038 0.0088 0.0042

10000000 0.0652 0.0248 15.2363 7.8872 0.0082 0.0042

Table 5: Performance of key generation (in seconds) in inner-product schemes w.r.t. parameter b

b Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

100 < 0.0001 < 0.0001 0.0002 < 0.0001 < 0.0001 < 0.0001
1000 < 0.0001 < 0.0001 0.0001 0.0001 < 0.0001 < 0.0001

10000 < 0.0001 < 0.0001 0.0001 0.0001 < 0.0001 < 0.0001
100000 < 0.0001 < 0.0001 0.0002 0.0029 < 0.0001 < 0.0001

1000000 < 0.0001 < 0.0001 0.0001 0.0031 < 0.0001 < 0.0001
10000000 < 0.0001 < 0.0001 0.0001 0.0032 < 0.0001 < 0.0001

Table 6: Performance of key derivation (in seconds) in inner-product schemes w.r.t. parameter b

The biggest difference of the schemes can be seen in Table 8 measuring the decryption times of the schemes
depending on the bound b of the inputs. While the Paillier scheme has only a slight linear increase in
computation times when b is increased, DDH-based schemes prove themselves practical only for vectors
with a small bound b. The latter observation is attributed to the computation of a discrete logarithm
in its decryption procedure, the performance of which is directly connected to the size of the decrypted
value. Interestingly, LWE-based schemes have the fastest decryption. The results indicate that the Paillier
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Figure 5: Performance of key generation (in seconds) in inner-product schemes w.r.t. parameter b

Figure 6: Performance of key derivation (in seconds) in inner-product schemes w.r.t. parameter b
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b Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

100 0.0253 0.0146 2.3037 3.6163 0.0128 0.0061
1000 0.0252 0.0146 4.3737 6.7322 0.0118 0.0060
10000 0.0258 0.0148 8.0981 6.9698 0.0119 0.0064

100000 0.0253 0.0148 5.7783 7.2934 0.0133 0.0063
1000000 0.0254 0.0148 4.8875 7.4155 0.0125 0.0061

10000000 0.0255 0.0149 5.6765 6.9367 0.0122 0.0062

Table 7: Performance of encryption (in seconds) in inner-product schemes w.r.t. parameter b

Figure 7: Performance of encryption (in seconds) in inner-product schemes w.r.t. parameter b

b Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

100 0.0321 0.0181 0.0001 0.0065 0.0091 0.0044
1000 0.0318 0.0183 0.0002 0.0113 0.0147 0.0079
10000 0.0326 0.0182 0.0002 0.0115 0.0803 0.0446

100000 0.0323 0.0184 0.0001 0.0094 0.5992 0.4420
1000000 0.0324 0.0182 0.0001 0.0102 6.2379 4.8445

10000000 0.0320 0.0185 0.0001 0.0092 63.9508 40.4848

Table 8: Performance of decryption (in seconds) in inner-product schemes w.r.t. parameter b
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Figure 8: Performance of decryption (in seconds) in inner-product schemes w.r.t. parameter b

scheme is to be preferred unless the bound and dimensionality of the input can be bounded or the use case
guarantees the resulting inner-product to be small. In this case, DDH based schemes seem to excel, while
LWE based schemes are advised only for small parameters when fast decryption times justify slow key
generation and encryption or if quantum security is needed.

2.2 Decentralized Inner-Product Scheme

Recall that an inner-product functional encryption scheme allows the encryption of a vector x ∈ Z` and
the derivation of a functional key sky for a vector y, where the vectors x and y are totally independent.
The decryption of the ciphertext of x under the functional key sky only reveals the inner-product x · y and
nothing more.

In many practical cases, the data that needs to be encrypted comes from multiple sources. Basic inner-
product schemes demand that the data is encrypted by a single client. This problem is solved by the Multi-
Client Inner-Product Encryption (MCIPE) which allows multiple sources of data to encrypt separately.
Such schemes depend on a trusted third party to delegate keys to the clients.

In many scenarios, the latter assumption is not acceptable. Hence, decentralized schemes were developed
to eliminate the need for the central trusted authority for key generation. The first such scheme was
developed in [6] and is implemented in GoFE and CiFEr.

Recently, a new approach to decentralization was developed in [3]. This approach allows to take an
arbitrary (centralized) MCIPE scheme that satisfies certain security properties and turns it into a secure
decentralized scheme. GoFE and CiFEr provides the API to a decentralized scheme defined in [3] too. It
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uses the MCIPE scheme based on the DDH assumption in Z∗p group. We now present the performance
results depending on various parameters. The schemes depend on the parameters ` (length of the encrypted
vectors) and b (upper bound for the coordinates of the inner-product vectors). All the results are averages
of many runs on different random inputs.

While the scheme from [6] is based on a pairing group which is fixed in advance, the implementation of
the scheme from [3] allows to choose the size of the group. The latter allows the user to adjust the security.
To benchmark the scheme the group is chosen to have p elements where p is a 2048 bit prime number,
which is a standard choice for a minimum of 128 bit security.

2.2.1 Benchmarking based on parameter `

We compare the performance of the first DMCFE scheme from [6] with the newly developed one from [3].
In Tables 9, 10, 11 we compare both schemes running on the same random inputs with fixed b = 1000 and
increasing `. The key generation procedure in the case of the decentralized schemes differs from the usual
procedure since it is distributed among clients. For this reason, it is a two-round procedure where each
client firstly creates its own public key and then sends the data to other clients. After receiving the data
from others, it finalizes its secret keys in the second round of computation. Note that all the algorithms
besides decryption are distributed among clients hence they are also measured per client.

The times needed to perform the setup operation of the schemes is not presented in the tables since it takes
less than a millisecond independently of the parameters ` and b.

` Dec. DDH scheme [3] DMCFE [6]

1 6.71 0.189
5 5.826 0.207
10 5.73 0.241
20 5.623 0.196
50 5.615 0.204

100 5.949 0.207

(a) First round of key generation

` Dec. DDH scheme [3] DMCFE [6]

1 11.777 0.0
5 34.351 0.827

10 62.124 1.849
20 119.404 3.802
50 296.097 9.744
100 600.541 19.667

(b) Second round of key generation

Table 9: Performance of algorithms (in milliseconds) in decentralized inner-product schemes w.r.t. vector
length `

2.2.2 Benchmarking based on parameter b

In Tables 12, 13, 14, we compare the performance of both schemes with fixed ` = 10 and increasing
b.

2.2.3 Interpretation

Performance analysis suggests that the decentralized schemes are practical enough for many use cases.
This was also demonstrated in ESORICS paper [12] about GoFE and CiFEr where a demonstration of
using DMCFE scheme for creating anonymous heatmaps was presented. Comparing the two schemes, in
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` Dec. DDH scheme [3] DMCFE [6]

1 0.003 2.065
5 0.006 4.583
10 0.012 4.601
20 0.019 4.559
50 0.032 4.584

100 0.083 4.639

(a) FE key derivation

` Dec. DDH scheme [3] DMCFE [6]

1 23.7 0.552
5 22.413 0.563

10 22.404 0.563
20 22.353 0.556
50 22.68 0.577
100 22.962 0.556

(b) Encryption

Table 10: Performance of algorithms (in milliseconds) in decentralized inner-product schemes w.r.t. vector
length `

` Dec. DDH scheme [3] DMCFE [6]

1 30.624 45.02
5 89.26 114.624

10 147.284 115.572
20 270.756 207.103
50 636.517 205.73

100 1353.023 374.925

(a) Decryption

Table 11: Performance of algorithms (in milliseconds) in decentralized inner-product schemes w.r.t. vector
length b
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b Dec. DDH scheme [3] DMCFE [6]

10 6.314 0.468
100 6.116 0.188
1000 5.73 0.241

10000 7.05 0.191

(a) First round of key generation

b Dec. DDH scheme [3] DMCFE [6]

10 68.653 1.987
100 73.164 1.846

1000 62.124 1.849
10000 81.388 1.82

(b) Second round of key generation

Table 12: Performance of algorithms (in milliseconds) in decentralized inner-product schemes w.r.t. bound
b

b Dec. DDH scheme [3] DMCFE [6]

10 0.016 4.64
100 0.022 4.71
1000 0.012 4.601

10000 0.022 4.555

(a) FE key derivation

b Dec. DDH scheme [3] DMCFE [6]

10 24.239 0.575
100 29.998 0.573

1000 22.404 0.563
10000 26.606 0.559

(b) Encryption

Table 13: Performance of algorithms (in milliseconds) in decentralized inner-product schemes w.r.t. bound
b

most of the procedures, DMCFE scheme with pairings from [6] is faster, since the algorithms used are
simpler but depending on a theoretically wider cryptographic assumption. This is particularly important
in the key generation operation, since the secret keys generated in the decentralized DDH scheme from [3]
are much bigger in size. Performance difference is reflected in the measured time, but would also be noted
in memory consumption. Nevertheless, in many practical cases the bound on the inputs can be relatively
big, hence the decryption is a bottleneck. Since operations in a Z∗p group are slightly faster than in a pairing
group, decentralized DDH scheme from [3] is preferred in this case.

2.3 Function Hiding Inner-Product Schemes

FE allows to decrypt a value f (x) without revealing the encrypted data x. In certain scenarios, it is preferred
that the function f also remains hidden to the decryptor. For example, if FE is used to predict values based

b Dec. DDH scheme [3] DMCFE [6]

10 124.573 9.856
100 132.616 20.372
1000 147.284 115.572

10000 404.663 915.511

(a) Decryption

Table 14: Performance of algorithms (in milliseconds) in decentralized inner-product schemes w.r.t. bound
b
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on private data, the provider of the prediction might not want to reveal the model used. Recently, a few
inner-product FE schemes were developed to allow this functionality. We have implemented three such
schemes in GoFE and CiFEr since they offer different functionality.

Probably the simplest function hiding inner-product scheme was presented in [11], together with possible
use cases. In [7], a more sophisticated function hiding scheme that allows encryption frommultiple sources
with the presence of a central authority was introduced. Moreover, as part of developing a new public key
quadratic FE scheme in [8], a function hiding inner-product scheme which allows certain public key style
encryption was developed. In what follows, we compare the performance of these three schemes.

As in the case of decentralized inner-product FE schemes, the performance depends on the bound of the
absolute values of inputs b and the length of input vectors `. Thus, we perform different measurements
based on these parameters. In the case of [7] which supports inputs from different sources, we evaluate it
as if each input coordinate is encrypted by a different source, where there are ` sources and their times are
summed up.

2.3.1 Benchmarking based on parameter `

In Tables 15 and 16, we compare the performance of the three schemes with fixed b = 1000 and increasing
`. As in the previous section, the times needed to perform the Setup of the schemes is not presented in the
tables since it takes less than a millisecond independently of the parameters ` and b.

` FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

1 0.842 3.624 1.597
5 1.359 7.179 2.118
10 4.418 12.199 4.023
20 12.12 20.501 5.641
50 127.344 44.043 15.763

100 888.525 93.734 25.424
200 5883.28 167.13 44.579

(a) Key generation

` FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

1 0.557 7.397 4.138
5 1.349 25.214 5.554
10 2.676 46.167 8.827
20 7.159 94.95 15.01
50 73.361 220.075 37.182

100 400.195 457.761 70.521
200 3042.225 875.552 128.012

(b) FE key derivation

Table 15: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length `
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` FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

1 1.304 1.854 1.925
5 3.771 7.223 2.013
10 6.909 13.258 2.933
20 13.262 29.888 5.002
50 33.832 65.235 11.635

100 63.905 138.579 22.003
200 129.491 262.719 39.82

(a) Encryption

` FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

1 44.066 67.863 52.23
5 129.184 192.469 134.857
10 135.723 238.706 143.605
20 249.66 474.407 284.614
50 350.541 842.555 339.756

100 530.436 1630.319 598.154
200 675.452 3051.101 673.243

(b) Decryption

Table 16: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length `

2.3.2 Benchmarking based on parameter b

In Table 17 and 18, we compare the performance of both schemes with fixed ` = 10 and increasing bound
b. All results are obtained as averages of repeatedly running the algorithms on random inputs.

b FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

10 4.013 10.861 4.209
100 2.65 9.928 2.904
1000 4.418 12.199 4.023

10000 2.637 9.923 2.975

(a) Key generation

b FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

10 3.157 44.179 9.321
100 2.679 44.237 10.485
1000 2.676 46.167 8.827

10000 2.691 43.473 9.098

(b) FE key derivation

Table 17: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length b

2.3.3 Interpretation

Function hiding schemes offer additional functionality on top of the inner-product schemes. The perfor-
mance is notably worse than in the usual inner-product schemes, but we believe that it is still practical
for many real-world scenarios. In most cases, the newest public key type encryption scheme from [8]
outperforms the other two. The main reason for this is that both, [11] and [7], require computing a rather
big matrix over Z∗p and inverting it, while the scheme from [8] avoids such computations. This means that
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b FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

10 6.948 13.306 2.997
100 6.817 13.082 3.649
1000 6.909 13.258 2.933

10000 6.823 13.22 4.81

(a) Encryption

b FHIPE [11] FH Multi IPE [7] PK FHIPE [8]

10 23.934 145.993 30.436
100 31.428 154.137 45.297
1000 135.723 238.706 143.605

10000 1096.941 1092.892 1121.35

(b) Decryption

Table 18: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length b

the scheme from [8] is the preferred choice in the case of data coming from one source, while the scheme
from [11] needs to be used in the multi-input scenario. Note that all schemes include computing a discrete
logarithm in the decryption phase, which is the main bottleneck if the output cannot be guaranteed to be
small.

2.4 Quadratic Scheme

Recall that a quadratic FE scheme allows a user to encrypt vectors x, y, and independently derive a FE key
depending on a matrix F, such that with the FE key one can decrypt the value yT Fx without revealing
x or y. This functionality is a powerful generalization of the inner-product FE schemes and allows many
practical use cases.

Two quadratic schemes have been implemented in GoFE and CiFEr. The first one, named SGP, is the
implementation of the paper [13], the second one is the implementation of [8]. A major downside of the
former scheme is that it does not allow encryption using a public key, meaning that for the encryption a
private secret key is needed. The latter one [8] allows public key encryption. Interestingly, it is based on
the PK FHIPE, a partially function hiding inner-product FE scheme benchmarked in Section 2.3. In what
follows, we compare the performance of both schemes.

2.4.1 Benchmarking based on parameter `

In Tables 19 and 20 we compare the performance of both schemes with fixed b = 1000 and increasing `.
The times needed to perform the Setup of the schemes are not presented in the tables since it takes less
than a millisecond independently of the parameters ` and b.

2.4.2 Benchmarking based on parameter b

In Table 21, 22 we compare the performance of both schemes with fixed ` = 10 and increasing bound b.
All results are obtained as averages of repeatedly running the algorithms on random inputs.

2.4.3 Interpretation

Quadratic FE schemes allow the evaluation of much more complicated functions on encrypted data than
inner-product ones. For this reason, it is expected to execute slower, but still fast enough for many
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` QUAD. from [8] SGP from [13]

1 8.547 0.006
2 11.061 0.014
5 25.669 0.037

10 52.215 0.215
20 110.902 0.139
50 288.893 0.235

(a) Key generation

` QUAD. from [8] SGP from [13]

1 7.622 1.232
2 8.84 1.442
5 18.289 1.381
10 34.109 2.175
20 65.199 2.136
50 161.16 2.062

(b) FE key derivation

Table 19: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length `

` QUAD. from [8] SGP from [13]

1 9.039 1.826
2 17.704 3.585
5 63.162 9.033

10 196.496 16.799
20 677.315 34.239
50 3820.934 83.368

(a) Encryption

` QUAD. from [8] SGP from [13]

1 54.476 41.311
2 86.147 85.268
5 254.163 265.622
10 470.814 636.11
20 906.298 1977.007
50 1777.779 10695.916

(b) Decryption

Table 20: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length `

(real-life) use cases as it was demonstrated in D6.4 by evaluating a 2-layer neural network. Comparing
the two schemes, the SGP scheme performs faster in most of its algorithms than the quadratic (QUAD)
scheme from [8]. This is the price to pay for the schem [8] to allow public key encryption. However,
the difference is not big. Since many practical scenarios need public key encryption, the QUAD scheme
performs comparably well. Note that the main bottleneck of the quadratic schemes is the calculation of
the discrete logarithm in the decryption which can be difficult since a quadratic function can return a much
greater output than what its inputs were.

2.5 Attribute-Based Encryption Scheme

In this section, we compare the performance of the two implemented ABE schemes: a CP-ABE scheme
FAME [4] and a KP-ABE scheme GPSW [10]. ABE schemes allow encryption of a message together with
a decryption policy determining which attributes are needed for a client to be able to decrypt. Such policies
can be expressed with boolean expressions or equivalentlyMonotone Span Program (MSP) structures. The
performance of most of the operations depends on the number of attributes used in the scheme specifying
the decryption policy. We measure the computational times based on the parameter a counting the number
of used attributes.
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Figure 9: Performance of the ABE setup (in seconds) w.r.t. parameter a

Figure 10: Performance of the ABE key generation (in seconds) w.r.t. parameter a
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Figure 11: Performance of ABE key derivation (in seconds) w.r.t. parameter a

Figure 12: Performance of ABE encrypt operation (in seconds) w.r.t. parameter a
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b QUAD. from [8] SGP from [13]

10 72.714 0.048
20 51.033 0.046
50 51.412 0.046
100 52.215 0.215
200 51.771 0.046
500 59.572 0.079

1000 105.416 0.239

(a) Key generation

b QUAD. from [8] SGP from [13]

10 34.474 1.442
20 34.214 1.265
50 34.233 1.298

100 34.109 2.175
200 34.012 1.45
500 34.017 2.283
1000 35.946 3.979

(b) FE key derivation

Table 21: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. bound b

b QUAD. from [8] SGP from [13]

10 194.879 17.776
20 194.257 16.31
50 196.118 16.607
100 196.496 16.799
200 197.734 16.279
500 198.483 20.8

1000 206.814 34.448

(a) Encryption

b QUAD. from [8] SGP from [13]

10 138.688 402.566
20 146.672 418.916
50 194.723 461.624

100 470.814 636.11
200 874.104 1015.027
500 3746.347 3429.851
1000 4370.975 4200.048

(b) Decryption

Table 22: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. bound b

a GPSW[Go] GPSW[C] FAME[Go] FAME[C]

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001
10 < 0.0001 < 0.0001 < 0.0001 < 0.0001
20 < 0.0001 < 0.0001 < 0.0001 < 0.0001
50 < 0.0001 < 0.0001 < 0.0001 < 0.0001
100 < 0.0001 < 0.0001 < 0.0001 < 0.0001
200 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 23: Performance of the ABE setup (in seconds) w.r.t. parameter a

a GPSW[Go] GPSW[C] FAME[Go] FAME[C]

5 0.0419 0.0060 0.0559 0.0057
10 0.0622 0.0091 0.0563 0.0057
20 0.1017 0.0156 0.0562 0.0057
50 0.2153 0.0348 0.0567 0.0056
100 0.4071 0.0662 0.0560 0.0057
200 0.7934 0.1290 0.0557 0.0065

Table 24: Performance of the ABE key generation (in seconds) w.r.t. parameter a
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a GPSW[Go] GPSW[C] FAME[Go] FAME[C]

5 0.0078 0.0011 0.1095 0.0152
10 0.0151 0.0023 0.1911 0.0265
20 0.0298 0.0046 0.3561 0.0485
50 0.0751 0.0111 0.8517 0.1146
100 0.1516 0.0225 1.6870 0.2265
200 0.3222 0.0002 3.4590 0.4498

Table 25: Performance of the ABE key derivation (in seconds) w.r.t. parameter a

a GPSW[Go] GPSW[C] FAME[Go] FAME[C]

5 0.0302 0.0043 0.3285 0.0516
10 0.0518 0.0076 1.1146 0.1766
20 0.0933 0.0139 4.1610 0.6507
50 0.2185 0.0324 25.0193 3.9700
100 0.4276 0.0631 100.1778 15.6191
200 0.8596 0.1254 413.8411 45.0077

Table 26: Performance of the ABE encryption (in seconds) w.r.t. parameter a

a GPSW[Go] GPSW[C] FAME[Go] FAME[C]

5 0.0599 0.0068 0.0718 0.0092
10 0.1195 0.0137 0.0721 0.0105
20 0.2404 0.0273 0.0723 0.0130
50 0.5998 0.0687 0.0772 0.0225
100 1.2217 0.1489 0.0916 0.0476
200 2.6465 0.0013 0.1897 0.0084

Table 27: Performance of the ABE decryption (in seconds) w.r.t. parameter a
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Figure 13: Performance of the ABE decryption (in seconds) w.r.t. parameter a
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3 Performance Optimizations

In this section, we summarize the efforts made to improve the performance of the libraries GoFE and
CiFEr.

3.1 Precomputation

The majority of the schemes implemented in GoFE and CiFEr depend on the hardness of computing the
discrete logarithm in a group (DDH assumption). The group in which this assumption is believed to hold
and which was chosen for the implementation is a subgroup of order q in the modular arithmetics group Z∗p,
where p = 2q + 1 is a safe prime. One of the main goals of GoFE and CiFEr is to provide FE functionality
that is as flexible and versatile as possible. For this reason, the group Z∗p in the implementation is not
fixed. On the contrary, a user can generate (setup procedure) his own safe prime p that is appropriate for
his choice of parameters. A search for a safe prime can be time consuming even if it is done only once at
the deployment stage.

Nevertheless, the security of the schemes is not compromised if the same group is used multiple times and
certain values are computed in advance, assuming that the values were not chosen specifically to allow
backdoors. For this reason, we enabled the initialization of the groups from the precomputed values. This
includes the precomputation of the safe prime numbers and generators of the subgroups in advance. This
allows the schemes to be used off-the-shelf and set up in less than a millisecond. For users not trusting that
the values were precomputed in a random way or wishing to use the scheme with parameters that were not
precomputed, the standard setup procedure is still available.

3.2 Elliptic Curve Cryptography

As noted before, the majority of schemes in GoFE and CiFEr are based on the computations in the modular
arithmetic subgroup Z∗p. While some schemes are bound to be used with this group (for example Paillier
scheme), others are flexible enough to be implemented with some other group in which DDH assumption
is believed to hold.

Groups of elliptic curves are a common replacement for Z∗p groups since the numbers that are used are
smaller. For this reason, certain operations can be computed faster in elliptic curves groups than in
Z∗p. To improve the performance of the schemes we have implemented the basic adaptively secure DDH
inner-product scheme also with operations in the elliptic curve group. The chosen group is a popular P256
group which has an optimized implementation in the standard Golang crypto library. Note that this group
should not be confused with pairing groups which are also elliptic curve groups but used for different
purposes.

In what follows, we compare the performance of the DDH inner-product scheme implemented with Z∗p
(2048-bit security and with the precomputed values as described in the previous section) and with the
P256 elliptic curve group where various input parameters are used. Recall that the scheme depends on the
bound of absolute values of inputs b and the length of input vectors `.
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3.2.1 Benchmarking based on parameter `

In Tables 28 and 29, we compare the performance of both schemes with fixed b = 1000 and increasing
`.

` DDH in Zp DDH in EC

1 11.198 0.19
5 55.395 0.989
10 113.264 2.901
20 231.274 4.103
50 592.737 12.093

100 1152.886 19.285
200 2296.972 40.711

(a) Key generation

` DDH in Zp DDH in EC

1 0.002 0.001
5 0.005 0.003

10 0.007 0.006
20 0.017 0.008
50 0.033 0.02
100 0.068 0.072
200 0.178 0.085

(b) FE key derivation

Table 28: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length `

` DDH in Zp DDH in EC

1 17.08 0.399
5 41.59 1.168
10 73.19 2.013
20 133.242 3.752
50 307.932 9.272

100 593.933 18.611
200 1165.522 35.84

(a) Encryption

` DDH in Zp DDH in EC

1 30.321 47.626
5 44.712 127.668

10 50.333 119.796
20 84.418 239.139
50 80.025 225.917
100 143.987 432.45
200 199.285 425.067

(b) Decryption

Table 29: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. vector length `

3.2.2 Benchmarking based on parameter b

In Tables 30 and 31 we compare the performance of both schemes with fixed ` = 10 and increasing bound
b. All results are obtained as averages of repeatedly running the algorithms on random inputs.

3.2.3 Interpretation

Using an EC group excels in key generation procedure and encryption since both procedures include
the computation of gx in a group for a random x, where x is much smaller in the EC group. Other
operations are slower which is reflected in decryption procedure taking even more time in EC. Hence, the
EC implementation is preferred only in some cases, for example when the inputs bound are small (or the
decryption values can be guaranteed small) or if encryption is done on a computationally less powerful
device like a cell phone.
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b DDH in Zp DDH in EC

10 118.903 3.385
100 113.359 1.84
1000 113.264 2.901

10000 126.262 1.848

(a) Key generation

b DDH in Zp DDH in EC

10 0.007 0.008
100 0.007 0.004

1000 0.007 0.006
10000 0.007 0.004

(b) FE key derivation

Table 30: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. bound b

b DDH in Zp DDH in EC

10 69.992 2.351
100 72.405 1.995
1000 73.19 2.013

10000 69.257 1.986

(a) Encryption

b DDH in Zp DDH in EC

10 13.801 3.17
100 25.036 16.294

1000 50.333 119.796
10000 309.666 1014.068

(b) Decryption

Table 31: Performance of algorithms (in milliseconds) in inner-product schemes w.r.t. bound b

3.3 Gaussian Sampling

Schemes based on LWE and ring-LWE assumptions and Paillier type schemes include sampling values
from the so-called discrete Gaussian distribution. While there exist many algorithms and optimized
implementations of discrete Gaussian samplers, FE algorithms need to use sampling from Gaussian
distribution with relatively big variance. For this reason, we have developed an implementation of a
discrete Gaussian sampler built for this task.

We have implemented and integrated into GoFE and CiFEr the new sampler from [14]. It is not limited by
sampling only small values and works in constant time to provide side-channel security. We report here on
the results of benchmarking it. In Table 32, one can see average times needed to sample a 1000-dimensional
vector with the Gaussian sampler where the times depend on the variance of the distribution. Note that
the sampler supports sampling with σ = k

√
1/(2 ln(2)) for an integer k. One can observe that sampling

bigger numbers only slightly worsen the performance. The main reason for this small difference is that
the sampler has to deal with greater integers, for example in the case k = 21024 the sampled values have
approximately 1024 bits.
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k = σ/
√
1/(2 ln(2)) Disc. Gauss. sampling

21 6.6090
22 6.7910
24 6.6270
28 6.6640
216 6.6390
232 6.9110
264 7.2660
2128 8.0090
2256 9.0260
2512 8.5270
21024 10.2790

Table 32: Performance of sampling (in milliseconds) a 1000 dimensional vector with discrete Gaussian
distribution with various σ
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4 Real-world Use Cases Performance

In this section, we briefly present two functional encryption use cases (more detailed presentation can be
found in Deliverable D6.3) and discuss their performance. The first one demonstrates the privacy-enhanced
health analysis, the second one presents applying neural networks on encrypted images. We compare the
performance of the FE approach with the homomorphic encryption (HE) approach. Note that the other two
showcases presented in Deliverable D6.3 (privacy-friendly generation of the traffic heatmap and documents
access control in hospitals) cannot be implemented by HE.

Performance evaluation of the two scenarios has been discussed to greater detail in a paper accepted at
ESORICS [1].

4.1 Privacy-Friendly Prediction of Cardiovascular Diseases

The prediction service is built on the Framingham risk score algorithms. The Framingham heart study
followed patients from Framingham, Massachusettes, for many decades starting in 1948. Many multivari-
able risk algorithms used to assess the risk of specific atherosclerotic cardiovascular disease events have
been developed based on the original Framingham study. Algorithms most often estimate the 10-year or
30-year Cardiovascular Disease (CVD) risk of an individual. The input parameters for algorithms are sex,
age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension,
smoking, and diabetes status. Using FE, the risk score can be computed using only the encrypted values
of the input parameters. The user specifies the parameters, these are locally encrypted and sent to the
prediction component. The service computes the 30-year risk and returns it to the user.

In [5], a report on the implementation of the 10-year CVD risk score using HE has been done. While this
approach has a clear advantage of a prediction service not knowing the risk score, it is also far less efficient
than the approach with FE. In a setup that enables the evaluation of higher degree polynomials (such as 7),
one multiplication of ciphertexts requires around 5 seconds on a modern laptop (Intel Core i7-3520M at
2893.484 MHz). Note that higher degree polynomials are needed to approximate the exponential function
by a Taylor series. While in the 10-year CVD risk algorithm, there is only one evaluation of the exponential
function, the 30-year algorithm uses two evaluations. An evaluation of the exponential function in [5]
requires more than 30 seconds since computing the Taylor series of degree 7 takes more than 30 seconds
(the powers of x already require 6 multiplications at 5 seconds each). On the contrary, our FE approach
returns the result in a matter of milliseconds.

Furthermore, there is a significant communication overhead in the HE approach as the ciphertext can
grow to roughly one megabyte (16384 coefficients of 512-bit). Communication messages in FE are much
smaller – a few kilobytes.

The HE approach could be sped up by computing the encryption of only the inner-products (as in the FE).
However, as the prediction service would know only the encryption of the inner-product, the rest of the risk
score algorithm would need to be computed at the user’s side and would require to move significant parts
of the prediction logic to the client component. In many scenarios, this might not be desirable, especially
if the prediction logic is computationally expensive. As a matter of fact, for all services where prediction
logic is computationally expensive, the FE approach is far more performant, but at the expense that the
prediction service knowns the predicted value.
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4.2 Neural Networks on Encrypted MNIST Dataset

In the previous section, we described how to implement privacy-friendly predictive services by using
efficient FE schemes for inner-products. Using linear functions many efficient machine learning models
can be built based on linear regression or linear logistic. However, linear models in many cases do not
suffice. One of those tasks is image classification where linear classifiers mostly achieve significantly lower
accuracy compared to the higher-degree classifiers. For example, classifiers for the well-known MNIST
dataset in which handwritten digits need to be recognized. A linear classifier on the MNIST dataset is
reported to have 92% accuracy, while more complex classifiers achieve over 99% accuracy. GoFE and
CiFEr include a scheme [13] for quadratic multivariate polynomials which enables the computation of
quadratic polynomials on encrypted vectors. This enables richer machine learning models and even basic
versions of neural networks. Using FE, we implemented an accurate neural network classifier for the
MNIST dataset. This means that an entity holding a functional key for a classifier can classify encrypted
images, i.e., can classify each image depending on the digit in the encrypted image, but cannot see anything
else within the image (for example, some characteristics of the handwriting).

For this use case, the GoFE library and a widely-used machine learning library Tensor-Flow [2] are used.
MNIST dataset consists of 60 000 images of handwritten digits. Each image is a 28×28 pixel array, where
each pixel is represented by its gray level. The model we used is a 2-layer neural network with quadratic
function as a non-linear activation function. Training of the model needs to be done on unencrypted data,
while prediction is done on encrypted images. The images have been presented as 785-coordinate vectors
(28 · 28 + 1 for bias). We achieved 97% accuracy, a result that is also reported in [13]. The decryption of
one image (applying the trained model on the encrypted image) takes under 2 seconds.

Similarly, CryptoNets [9], an HE approach for applying neural networks to encrypted data, needs an
already trained model. The model they use is significantly more complex than ours (the trained network
has 9 layers) and provides an accuracy of 99%. Note that as currently no efficient FE schemes exist for
polynomials of degree greater than 2, no such complex models are possible with FE. On the other hand,
the execution using the HE approach is significantly slower. Applying the network on encrypted data using
CryptoNets takes 570 seconds on a PC with a single Intel Xeon E5-1620 CPU running at 3.5GHz. But
note that applying the network allows executing many predictions simultaneously if this is needed.

Thus, compared to the FE approach, HE can provide more complex machine learning models and con-
sequently ones with higher accuracy. Nevertheless, HE has a limitation which is particularly important
in the present application. HE can only serve as privacy-friendly outsourcing of computation, while the
result of this computation can be decrypted only by the owner of the secret key. FE allows the third party
to decrypt the result, in our case the digit in the image, without exposing the image itself. One can easily
imagine a more complex FE alert system on encrypted video, where the system detects the danger without
violating the privacy of the subjects in the video when there is none. Currently, only primitive versions of
such a system are possible as more efficient schemes (in terms of performance and polynomial degree) are
needed.

Also, as in the Framingham risk score algorithm, the HE approach is advantageous in the sense that the
prediction component does not know the results (only the ciphertext of it). However, when the execution
time is prioritized over the accuracy, the FE approach can enable viable machine learning models that can
be applied on the encrypted data.
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5 Conclusions

In this deliverable, we showed that the performance of the FENTEC libraries is sufficient for real-world
use cases. The most time-consuming operations are the ones that are executed only once – at the
deployment phase. The operations, like functional key derivation, encryption, and decryption that need
to be executed frequently are fast and do not introduce bottlenecks in the deployed systems. Users of the
libraries can choose from a variety of functional encryption schemes – ranging from single input inner-
product, multi input inner-product and decentralized inner-product schemes, to more complex quadratic
and attribute-based encryption schemes. Each of the schemes can be instantiated using different underlying
cryptographic primitives that provide the same functionality but excel at different operations. Thus, users
can choose the underlying primitives to optimize the performance of the GoFE and CiFEr libraries for
their use cases.
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