
D5.3 Final Report on
Hardware-Optimized Schemes

Document Identification

Status Final Due Date 30/04/2020

Version 1.0 Submission Date 29/04/2020

Related WP WP5 Document
Reference

D5.3

Related
Deliverable(s)

D5.1, D5.2, D5.5, D5.7,
D5.9

Dissemination
Level(*)

PU

Lead Participant UH Lead Author Kimmo Järvinen (UH)

Contributors KU Leuven, UH,
Kudelski

Reviewers Marco Lewandowsky
(FUAS)
Miha Stopar (XLAB)

Keywords:

Functional encryption, hardware, implementation, FPGA

This document is issued within the frame and for the purpose of the FENTEC project. This project has received
funding from the European Union’s Horizon2020 under Grant Agreement No. 780108. The opinions expressed and
arguments employed herein do not necessarily reflect the official views of the European Commission.

This document and its content are the property of the FENTEC consortium. All rights relevant to this document
are determined by the applicable laws. Access to this document does not grant any right or license on the document
or its contents. This document or its contents are not to be used or treated in any manner inconsistent with the
rights or interests of the FENTEC consortium or the Partners detriment and are not to be disclosed externally
without prior written consent from the FENTEC Partners.

Each FENTEC Partner may use this document in conformity with the FENTEC consortium Grant Agreement
provisions.

(*) Dissemination level.-PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in
Model Grant Agreement; CI: Classified, Int = Internal Working Document, information as referred to in Commis-
sion Decision 2001/844/EC.

Document Information

List of Contributors

Name Partner

Kimmo Järvinen UH

Milad Bahadori UH

Angshuman Karmakar KU Leuven

Jose Maria Bermudo Mera KU Leuven

Josep Balasch KU Leuven

Document History

Version Date Change editors Changes

0.1 25/03/2020 Kimmo Järvinen (UH) First version

0.2 07/04/2020
Kimmo Järvinen (UH),
Angshuman Karmakar
(KU Leuven)

Added text

0.3 14/04/2020
Kimmo Järvinen (UH),
Milad Bahadori (UH)

Added text

0.4 16/04/2020 Kimmo Järvinen (UH) Many small changes

0.5 23/04/2020

Jose Maria Bermudo
Mera, Angshuman
Karmakar, Josep
Balasch (KU Leuven)

Updated various parts

0.9 23/04/2020 Kimmo Järvinen (UH) Review version

1.0 29/04/2020 Kimmo Järvinen (UH) Final version

Quality Control

Role Who (Partner short name) Approval Date

Deliverable Leader Kimmo Järvinen (UH) 29/04/2020

Technical Manager Michel Abdalla (ENS) 29/04/2020

Quality Manager Diego Esteban (ATOS) 29/04/2020

Project Coordinator Francisco Gala (ATOS) 29/04/2020

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 1 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information . 1
Table of Contents . 2
List of Figures . 3
List of Acronyms . 4
Executive Summary . 5
1 Introduction . 6

1.1 Purpose of the document . 6
1.2 Structure of the document . 6

2 Analysis of FE schemes . 7
2.1 Preliminaries . 7
2.2 Multi-input FE for inner products . 7
2.3 Multi-input FE for inner products from Paillier encryption 8
2.4 Single-input FE for inner products from RLWE 9
2.5 Cryptographic pairings and their use in FE 10
2.6 Requirements for hardware acceleration . 12

3 Architectures for the FE schemes . 14
3.1 FE schemes based on large integer modular arithmetic 14
3.2 Lattice-based FE schemes . 17

3.2.1 Noise sampling . 17
3.2.2 Polynomial arithmetic . 18

3.3 Cryptographic Pairings . 19
3.3.1 Pairing Cryptography Processor (PCP) 20

3.4 Integrating Multi-CP and PCP Cores in a HW/SW Codesign 21
4 Results . 23

4.1 Results for multi-input FE from Paillier encryption 23
4.2 Results for pairing computations . 26

5 Conclusions and future work . 30
References . 31

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 2 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

1 Underlying security models for the different tasks in WP5. Green (trusted envi-
ronment), red (untrusted environment). 6

2 Encryption for the input i of the multi-input FE for inner products based on the
Paillier encryption [2, adapted from Figs. 1, 3 and 9] 8

3 Decryption (inner product computation) of the multi-input functional encryption
for inner products based on the Paillier encryption [2, adapted from Figs. 1, 3 and 9] 9

4 Optimal ate pairing over BN curves. 11
5 Multi-input FE for inner products. The grey-colored parties benefit from hardware

accelerators. 13
6 High-level architecture of HW/SW codesign of our multi-core architecture for

multi-input FE from Paillier encryption . 15
7 The architectural diagram of the CP core . 16
8 High level architecture of the HW/SW codesign for the pairing 20
9 Architecture of the pairing cryptography processor PCP 21
10 High-level block diagram of the integrated multi-CP core architecture and PCP

core in a HW/SW codesign (high-level blocks and interconnects are shown) 22

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 3 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

AXI Advanced Extensible Interface

BN Barreto-Naehrig

CLB Configurable Logic Block

CP Cryptoprocessor

DDH Decisional Diffie–Hellman assumption

DDR3 Double Data Rate 3 Synchronous Dynamic Random-Access Memory

DMEM Data Memory

DSP Digital Signal Processing

FE Functional Encryption

FPGA Field Programmable Gate Array

FSM Finite State Machine

HW Hardware

IMEM Instruction Memory

I/O Input/Output

LUT Look-Up Table

LWE Learning With Errors

MIFE Multi-Input Functional Encryption

NTT Number-Theoretic Transform

PCP Pairing Cryptography Processor

RLWE Ring Learning With Errors

RSA Rivest–Shamir–Adleman public-key cryptosystem

SoC System-on-Chip

SW Software

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 4 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

In this deliverable D5.3 “Final Report on Hardware-Optimized Schemes”, we give a description
of work that has been done for developing hardware-optimized schemes for functional encryption
(FE). D5.3 extends D5.2 “Preliminary Report on Hardware-Optimized Schemes” from May 2019.
This deliverable is specifically about the work in Task 5.2. As defined in D5.1 “Security and
Trust Models”, we assume full trust for the hardware-optimized schemes. This means that the
computing platform is not susceptible to physical attacks because either adversaries do not have
an access to it (e.g., is located in a secure environment) or it is certified to provide protection
against physical attacks (e.g. a smart card or secure element). Consequently, the focus is in
maximizing the efficiency of implementations which in this case means primarily accelerating the
computations so that FE schemes can be computed as fast as possible. The work has focused on
two different types of FE schemes: (1) schemes using large integer modular arithmetic and (2)
schemes based on lattices. For the former, we describe an FPGA-based multi-core architecture
for accelerating multi-input FE for inner product computations based on Paillier encryption and
provide the final results for it. For the latter, we describe an instantiation of a post-quantum
secure single-input FE scheme based on RLWE, detail its current status, and provide research
directions towards an efficient hardware-optimized implementation. We describe a potentially
new polynomial multiplication strategy to speed up RLWE based FE schemes. Additionally, we
provide results for cryptographic pairings which are central building blocks for FE schemes with
more expressive functions and additional features.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 5 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This deliverable D5.3 “Final Report on Hardware-Optimized Schemes” gives a description of
work in WP5 of FENTEC and in particular in Task 5.2 of WP5. The deliverable provides
details about development of hardware-optimized schemes for functional encryption (FE). This
deliverable extends the preliminary report D5.2 from the spring 2019.

As discussed in D5.1, Task 5.2 focuses on the case where the entire computing platform is trusted
and emphasis is on the efficiency of implementations. Fig. 1 shows the trust models of WP5
as a recap from D5.1. This deliverable focuses on hardware-optimized schemes shown on the
left.

Figure 1: Underlying security models for the different tasks in WP5. Green (trusted
environment), red (untrusted environment).

This deliverable focuses on two specific FE schemes:

• a multi-input FE scheme based on Paillier encryption proposed in [2, 4] and

• a single-input FE scheme based on learning with errors (LWE) introduced in [1].

For the former, we analyze the scheme, present a multi-core FPGA-based architecture for its
efficient computation, and provide performance and area requirement results. For the latter, we
analyze the scheme and presents specific plans for its efficient implementation. Additionally, we
discuss computation of cryptographic pairings which are central building blocks for FE schemes
for more complex functions and extended functionalities. Particularly, we focus on optimal ate
pairings on Barreto-Naehrig curves which represent the state of the art of efficient pairings.

1.2 Structure of the document

This deliverable is structured as follows. Section 2 provides the preliminaries of the FE schemes
and pairings studied in this deliverable and analyzes them from the point of view of how to
efficiently compute them with the selected computing platform (e.g., FPGA). Section 3 describes
the computing architectures of the current versions of implementations of the FE schemes and
pairings discussed in Section 2. The final results for our implementations are given in Section 4.
Section 5 ends this deliverable with conclusions and certain plans for the future work.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 6 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

2 Analysis of FE schemes

In this section, we shall briefly introduce the FE schemes that are studied in this deliverable.
The details of the schemes will be provided up to the level that is required to understand the
hardware related aspects discussed in the following sections; readers interested in further details
should consult the other FENTEC deliverables or the original publications (e.g., [2, 4, 1]).

2.1 Preliminaries

FE allows a key authority (the owner of a master secret key msk) to derive a decryption key skf
that permits the holder of skf and Enc(x), the encryption of x, to learn the value of f(x), but
nothing else about x. E.g., FE allows calculating certain statistics over an encrypted data set
without revealing the actual data.

Single-input FE permits a single user to encrypt a vector of values x = (x0, x1, . . . , xm−1) so that
an evaluator, who has skf , may compute f(x). Multi-input FE [27, 26] contains n slots and
allows n different users to encrypt their respective plaintexts xi = (xi,0, xi,1, . . . , xi,m−1). The
decryption key skf permits to compute the value f(x) for x = (x0,x1, . . . ,xn−1). This makes the
scheme very useful for many practical applications such as privacy-preserving data mining and
delegated data processing because data to a function can be collected from different users.

2.2 Multi-input FE for inner products

While FE constructions for arbitrary polynomial-sized circuits exist (e.g., [48, 23]), they are
mostly theoretical constructions that are far from being practical. In this deliverable, we focus
on FE schemes that have been designed with efficiency in mind for a limited, but still practically
relevant, functionality of computing inner products 〈x,y〉 from encryptions of x. In the context
of inner products, a multi-input FE scheme allows the holder of skf to compute

fy(x) =

n−1∑
i=0

〈xi,yi〉 =

n−1∑
i=0

m−1∑
j=0

xi,jyi,j . (1)

During the recent years, many schemes for (multi-input) FE for inner products have been pre-
sented based on various cryptographic assumptions and features [2, 3, 4, 15, 18, 20]. In this
deliverable, we focus on the multi-input FE scheme introduced by Abdalla et al. in [2] that allows
building a multi-input FE scheme from any single-input FE scheme without pairings. We consider
two instantiations. The first one is based on [2] and uses the single-input FE based on Paillier
encryption introduced by Agrawal et al. in [4]. For the sake of brevity, we skip many of the details
here and refer interested readers to [2, 4] for details, but we provide the relevant algorithms below
in Section 2.3. The second one uses the method described in [1] to instantiate a FE scheme based
on LWE. We provide the relevant algorithms and the current status of FENTEC research on this
topic in Section 2.4.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 7 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Input: The encryption key ski = (Ni, gi,hi,ui) for input i consisting of the composite
modulus Ni, a generator gi ∈ Z∗

N2
i
, and two vectors hi = (hi,0, hi,1, . . . , hi,m−1)

with hi,j ∈ ZN2
i

and ui = (ui,0, ui,1, . . . , ui,m−1) with ui,j ∈ ZL; The plaintext

vector xi = (xi,0, xi,1, . . . , xi,m−1) with xi,j ∈ Z`
Output: Ciphertext ci = (ci,0, ci,1, . . . , ci,m) where ci,j ∈ ZN2

i

1 w = (w0, w1, . . . , wm−1)← (xi,0 + ui,0, xi,1 + ui,1, . . . , xi,m−1 + ui,m−1) (mod L)
2 r ←R {0, 1, . . . , bNi/4c}
3 ci,0 ← gri
4 for j = 0 to m− 1 do
5 ci,j+1 ← (wjNi + 1)hri,j

6 return ci = (ci,0, ci,1, . . . , ci,m)

Figure 2: Encryption for the input i of the multi-input FE for inner products based
on the Paillier encryption [2, adapted from Figs. 1, 3 and 9]

2.3 Multi-input FE for inner products from Paillier encryption

In the following, we will shortly review the encryption and decryption (inner product computa-
tion) operations of the multi-input FE scheme for inner products based on Paillier encryption
that was proposed by Abdalla et al. in [2]. The scheme is using the single-input FE based on
Paillier encryption introduced by Agrawal et al. in [4] in a generic framework for multi-input FE.
The major benefit from implementation point-of-view is that the schemes can be implemented
without the use of cryptographic pairings which are computationally expensive and cumbersome
to implement as will be discussed with more details later in this deliverable.

Let n be the number of inputs (users) and m the length of each user’s input xi = (xi,0, . . . , xi,m−1)
as defined above. Let ` and L be integers such that the operands of the inner product xi,j , yi,j ∈ Z`
and the result of the inner product p ∈ ZL; hence, it must hold that L > nm(`− 1)2 in order to
ensure that p is not reduced modulo L.

The key authority generates an encryption key ski for each user i, for i = 0, . . . , n − 1, such
that it comprises an RSA-like modulus Ni, a generator gi, ui = (ui,0, . . . , ui,m−1) with ui,j ∈R
ZL, and hi,j = gsi,j for j = 0, . . . ,m − 1, where si,j are random values derived from discrete
Gaussian distribution. The decryption key for y is derived for the evaluator such that sky =
(z, d1, . . . , dn−1,y) where z =

∑n−1
i=0 〈ui,yi〉 and di =

∑m−1
j=0 yi,jsi,j . The idea of the multi-input

FE scheme from [2] is that, during encryption, the values of the single-input FE schemes are
masked with ui and, during decryption, this mask is then removed from the overall result by
using z. The details of the other parameters can be found in [2, 4].

Fig. 2 shows an algorithm that allows the user i to encrypt its input values xi. The algorithm
follows almost directly the encryption process from [4] (also given in [2, Fig. 9]) with the exception
that in line 1, the user first masks the values with the masks vector ui as described in [2, Figs. 1
and 3]. Because the masked values w are encrypted instead of xi, the evaluator can compute the
inner product independently for each user input without learning their real values.

Fig. 3 shows an algorithm that allows the evaluator, who possesses the decryption key sky,
to compute the inner product 〈x,y〉 =

∑n−1
i=0 〈xi,yi〉 from the users’ encrypted inputs ci for

i = 0, . . . , n − 1 and the respective weight vectors yi. One iteration of the for loop (in lines 1–6

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 8 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Input: The decryption key sky = (N,y,d, z) for inner product 〈x,y〉 consisting of the
composite moduli N = (N0, N1, . . . , Nn−1), the weight vectors
y = (y0,y1, . . . ,yn−1) with yi = (yi,0, yi,1, . . . , yi,m−1) and yi,j ∈ Z`, the decryption
keys for individual inputs d = (d0, d1, . . . , dn−1) with di ∈ Z, and the decryption
key for inner product z ∈ ZL; The ciphertexts c = (c0, c1, . . . , cn−1) where
ci = (ci,0, ci,1, . . . , ci,m) and ci,j ∈ ZN2

i

Output: inner product p ∈ ZL
1 for i = 0 to n− 1 do

2 pi ← c−1i,0
3 pi ← pdii
4 for j = 0 to m− 1 do
5 pi ← pi · c

yi,j
i,j+1

6 pi ←
pi−1 mod N2

i
Ni

7 p←
∑n−1

i=0 pi − z mod L
8 return p

Figure 3: Decryption (inner product computation) of the multi-input functional
encryption for inner products based on the Paillier encryption [2, adapted from
Figs. 1, 3 and 9]

of Fig. 3) computes the inner product of the user i homomorphically and decrypts the masked
result. This directly uses the decryption process of the single-input FE from Paillier encryption
from [4] and relies on the fact that Paillier encryption is additively homomorphic which permits
computing the encryption of the product xi,jyi,j by raising the encryption of xi,j to power yi,j
(in line 5 of Fig. 3). The real value of the inner product of all users’ masked inner products
can be recovered in the end (in line 7 of Fig. 3) by subtracting the decryption key z from their
sum.

2.4 Single-input FE for inner products from RLWE

Jointly with XLAB and ENS, Paris we propose a scheme which is inspired by the FE LWE schemes
from [1, 4], but based on the ring-LWE assumption from [37]. It allows to encrypt vectors from
the l-dimensional space with absolute value of coefficients smaller than B and decrypting the
inner product of them with a vector with the same bounds.

Construction:

• Setup: For n a power of two we fix a prime q and ring R = Z[x]/(xn+1), i.e. the elements of
R are polynomials of degree at most n−1 over Z. Denote with Rq = R/(qZ). Fix σ such that
the ring-LWE decision problem is hard over Rq, where the errors and secret are sampled
from Dσ. We uniformly at random sample a ∈ Rq (sampling coefficient independently)
and elements {si | i ∈ {1, . . . , l}}, {ei | i ∈ {1, . . . , l}} from R, by sampling coefficients
of si, ei from the discrete Gaussian distribution with standard deviation σ1 =

√
2lBσ,

denoted by Dσ1 . Then {si | i ∈ {1, . . . , l}} is a set of secret keys and the public key is
(a, {pki | i ∈ {1, . . . , l}}), where pki = asi + ei ∈ Rq. We also fix p to be a number bigger

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 9 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

than 2B2l.

• Encrypt: To encrypt a vector ~m = (m1, . . . ,ml) ∈ Zl with coefficients from (−B,B) we
sample r and f0 by sampling its coefficients independently from Dσ2 where σ2 =

√
2σ,

and {fi | i ∈ {1, . . . , l}} by sampling their coefficients independently from Dσ3 where
σ3 = (

√
2(nlσ22 log(1/ε) + 1)σ1. We fix 1Rq to be the identity element of Rq and calculate:

c0 = ar + f0 ∈ Rq,

ci = pkir + fi + (bq/pcmi)1R ∈ Rq.

Then (c0, {ci | i ∈ {1, . . . , l}}) is the encryption of ~m.

• KeyGen: To generate a key that decrypts ~m · ~y for ~y = (y1, . . . , yn) ∈ Zl we calculate

s~y =

l∑
i=1

yisi ∈ R.

• Decryption: To decrypt (c0, {ci | i ∈ {1, . . . , l}}) using s~y and ~y we calculate

d = (
l∑

i=1

yici)− c0sy ∈ Rq.

Then d should be close to (~m·~y)q
p 1R (a bit perturbed coefficients) and we can extract ~m · ~y.

The above RLWE based inner product scheme has been updated from what was reported in
deliverable 5.2. We have changed the construction to make it provably secure. At the time of
writing this deliverable we are finalizing the proof of security. We plan to do the following in the
coming months.

1. Once the security proofs are finalized we will find suitable parameters for q, σ, and n. Since
we changed the construction the old parameters are not valid anymore.

2. A generic C implementation and optimized vectorized implementation using Intel AVX
instructions for different levels of security and different values of B and l will be provided.

3. A research paper will be sent to a conference with submission date around August-September,
2020.

2.5 Cryptographic pairings and their use in FE

While FE for linear functions (namely, inner products) can be realized from standard assumptions
without cryptographic pairings, extending FE to support more complex functions (e.g., quadratic
functions) or certain additional features (e.g., function hiding, decentralization, etc.) can be
implemented with the use of bilinear maps through cryptographic pairings. Examples of such FE
constructions include [2, 3, 12, 13, 18].

A cryptographic pairing is a bilinear map G1×G2 → G3 where G1 and G2 are additive groups and
G3 is a multiplicative group. Many types of cryptographic pairings and pairing-friendly elliptic
curves have been proposed in the literature. Because of this, the implementation that will be
described in Section 3.3 is designed so that it can be programmed to implement different types

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 10 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Input: P ∈ G1 and Q ∈ G2.
Output: aopt(Q,P) = f , where f ∈ Fp12 .
Constant: t∈Z so that p = 36t4 + 36t3 + 24t2 + 6t+ 1 and r = 36t4 + 36t3 + 18t2 + 6t+ 1

are primes; and s = 6t+ 2 =
∑L−1

i=0 si2
i, where si ∈ {−1, 0,+1}.

1 T ← Q, f ← 1
2 for i = L− 2 to 0 do
3 f ← f2 · lT,T (P); T ← 2T
4 if si 6= 0 then
5 f ← f · lT,siQ(P); T ← T + siQ

6 Q1 ← πp(Q); Q2 ← −πp2(Q)
7 f ← f · lT,Q1(P); T ← T +Q1

8 f ← f · lT,Q2(P); T ← T +Q2

9 f ← f (p
12−1)/r

10 return f

Figure 4: Optimal ate pairing over BN curves.

of pairings and parameters. Despite this, we will focus on implementing optimal ate pairings on
a BN curve to keep the discussion simple and focused. In the context of optimal ate pairings on
BN curves, G1 and G2 are additive groups of points on elliptic curves E(Fp) and E(Fpk) and G3

is the multiplicative group of Fpk . The parameters must be chosen so that discrete logarithms
in all three groups are infeasible; e.g., for approximately 128-bit security level, we need a 256-bit
prime p and k = 12.

The algorithm for computing an optimal ate pairing over BN curves is given in Fig. 4. The two
main operations in the algorithm are the Miller loop in lines 2–5 and the final exponentiation
in line 9. The former consists of elliptic curve arithmetic in E(Fp2) and line evaluations in Fp12
that can be interleaved. The latter is an exponentiation in Fp12 that can be decomposed into

f (p
6−1)(p2+1)(p4−p2+1)/r, of which the two first terms can be efficiently computed with Frobenius

operators and conjugations. The last term is computationally the most demanding part and is
called the hard part.

In this deliverable and, particularly, in the implementation discussed in Section 3.3, we assume
that optimal ate algorithm of Fig. 4 is computed by using the subalgorithms from [14]. They
used t = 262 − 254 + 244 that enables efficient computation of the Miller loop and the hard part
of the final exponentiation while providing 126-bit security level. In [14], Fp12 is represented as a
tower extension field with the following irreducible binomials:

Fp2 = Fp[u]/(u2 − β),where β = −5 (2)

Fp6 = Fp2 [v]/(v3 − ξ),where ξ = u (3)

Fp12 = Fp6 [w]/(w2 − v). (4)

Consequently, arithmetic operations in the above fields are computed with series of operations in
Fp and can utilize Karatsuba-like constructions to build the tower field arithmetic.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 11 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

2.6 Requirements for hardware acceleration

As can be seen in Section 2.4, in the case of single-input FE based on RLWE, both encryption
and decryption operations require polynomial arithmetic in the ring Rq. The polynomial multi-
plication in Rq is defined as a convolution between two vectors and will be the most expensive
operation while addition and rounding are operations performed coefficient-wise and therefore
with linear complexity.

During encryption, (m + 1) convolutions of N -dimensional vectors must be performed. This
will largely determine the performance of encryption. However, all these multiplications can be
computed in parallel so they will benefit from a hardware accelerator with multiple arithmetic
cores.

During decryption, also (m + 1) convolutions of N -dimensional vectors must be computed, al-
though this time the results are not independent but have to be combined to retrieve the output
message. Nonetheless, as for encryption, decryption will also benefit from multiple polynomial
arithmetic cores running in parallel.

The approach for accelerating lattice-based cryptography with hardware can follow a HW/SW
paradigm where only the expensive arithmetic operations, namely the convolution and modular
reductions, are performed in the HW side, and the rest of operations as well as the control of the
special hardware is carried out in a processor. We have already proven this approach as successful
for accelerating lattice-based encryption in our recent publication available at [39] and similar
principles can be applied for lattice-based FE. Regarding the polynomial multiplier, given the
large dimension of N when compared to lattice-based public key encryption or digital signatures,
the architecture shall be based on the NTT rather than other approaches such as Karatsuba or
Toom-Cook based multipliers.

Next, we show a survey of the computational requirements for different parties in the multi-input
FE setting. In particular, we have studied which parties could benefit from dedicated hardware
accelerators.

Fig. 5 shows a pictorial presentation of the setting for multi-input FE for inner products. The key
authority generates and distributes the encryption keys to the n users and provides the evaluator
with the decryption key sky. This is a one-time effort and does not require hardware acceleration.
Hence, we do not consider it after this point and focus on the computations of the users and the
evaluator (e.g., server) from now on in this deliverable.

As can be seen from Fig. 2 and Fig. 3, in the case of multi-input FE based on Paillier encryption,
both encryption and decryption operations are computationally involved operations requiring
modular multiplications and exponentiations with a large modulus N2.

Encryption (Fig. 2) needs to be computed for all n users, which equals to (m + 1) · n modular
exponentiations in total (and several modular multiplications). However, as shown in Fig. 5, they
are distributed for different users and, thus, benefit from inherent parallelism. The computa-
tional cost of a single user grows linearly with m, the length of the user’s input vector. Hardware
acceleration may be required if m is large and/or data needs to be sent to the evaluator fre-
quently.

Decryption, on the other hand, is computed solely by the evaluator and becomes a significant
computational burden, especially, when n, the number of users, is large: the evaluator needs to
compute exponentiations with large exponents di for each user (line 3 of Fig. 3). However, it

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 12 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

User k

User k – 1

User k + 1

Server

|

Public key pk

(Δ1), ((-2 x0), (-2 x1), …, (-2 xm-1))

| | | | | |

(Cpack)| |
| |

The server calculates (di) = (||x – yi|| 2) for all yi in database

Y (n vectors of length m) in the encrypted domain, packs

(and possibly masks) them, and sends them to the user.

|||

User n – 1

Server

Server computes:

 x , y = Dec (sk y , (c0 , c1 , … , cn – 1))

c
 0 = Enc (sk0 , x0)

Key

Authority

User 0

User 1

.
 .

.
 .

 .

.
 .

 .

sk
0

sk
1

sk
n – 1

sk
 y

.
 .

 .

c1 = Enc (sk1 , x1)

cn – 1 = Enc (skn – 1 , xn – 1)

=

Figure 5: Multi-input FE for inner products. The grey-colored parties benefit from
hardware accelerators.

is reasonable to assume that the modular exponentiations that are computed with each yi,j (in
line 5 of Fig. 3) are a lot cheaper because yi,j are typically small (yi,j ∈ Z`). Nevertheless, we
estimate that the evaluator is the party in Fig. 5 that has the most urgent need for hardware
acceleration. Fig. 3 also includes a lot of inherent parallelism because each users’ inputs can be
processed in parallel before combining them in line 6 of Fig. 3. This motivated us to design a
multi-core architecture for accelerating the algorithms of Fig. 2 and Fig. 3 as will be discussed in
more details in Section 3.

Pairings are complicated cryptographic computations that are often considered good targets for
HW acceleration. There are, however, certain aspects in pairing computatations that hinder de-
signing efficient HW implementations. Arguably, the most important difficulty is the complexity
of pairing computations in terms of the number of required algorithms (e.g., [14] utilizes 31 al-
gorithms), which leads to complicated control logic in hardware implementations. This overhead
can be mitigated by adapting the HW/SW codesign paradigm where control is taken care of by
the SW side and pure computation is done efficiently in the HW side. In optimal ate pairings, the
actual computations are based on Fp arithmetic due to the tower field arithmetic. Hence, the HW
side in a HW/SW codesign is based on an efficient Fp processor that is then controlled by the SW
side. It should be noted that similar HW/SW codesign paradigm suits well also for (multi-input)
FE computations and, hence, a HW/SW codesign for pairing computations can be integrated to
a HW/SW codesign for FE computations in a relatively straightforward way. In the following
sections, we will consider FE computation and pairing computation designs mostly in an isolated
manner for the sake of clarity. However, in reality, they would most likely be integrated into a
single HW/SW codesign to support FE computations that require both large integer modular
arithmetic and cryptographic pairings.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 13 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

3 Architectures for the FE schemes

This section details the architectures of the current versions of the prototype implementations of
FE schemes discussed in Section 2, that is, based on Paillier encryption and based on RLWE. For
the former we describe a complete FPGA-based accelerator architecture, while for the latter we
identify its main bottlenecks and sketch how to overcome them. We also describe the efficient,
complex and programmable pairing architecture.

3.1 FE schemes based on large integer modular arithmetic

We have designed an FPGA-based architecture for accelerating the multi-input FE scheme based
on Paillier encryption that was described in Section 2.3. The overall architecture is a HW/SW
codesign implemented on a reconfigurable system-on-chip (SoC) that consists of processor cores
and a reconfigurable FPGA fabric. In the following, we consider the Xilinx Zynq-7000 all pro-
grammable SoCs and, especially, the Xilinx Zynq-7020 xc7z020clg484-1 in the Avnet ZedBoard
development kit as the main implementation platform, but the architecture is generic in the sense
that it can be used in other reconfigurable SoCs from Xilinx, or even from other manufacturers
(e.g., Intel), with minor modifications. In Zynq-7000, the SW side consists of software running
on a dual-core ARM Cortex-A9 and the HW side is an Artix-7 FPGA.

Fig. 6 shows the high-level architectural diagram of the accelerator architecture. In the architec-
ture, speed-critical operations (i.e. large integer modular arithmetic) are computed in the HW
side while SW side takes care of controlling the HW side and all external peripherals (i.e., the
I/O and DDR3 memory) as well as cryptographic tasks that are not speed or security critical. In
this deliverable, we will focus mostly on the accelerator architecture that is implemented in the
HW side whereas the HW/SW codesign features are discussed more closely in D5.4. We discuss
here how the modular multiplications and exponentiations of the algorithms in Fig. 2 and Fig. 3
are implemented on the FPGA. One of the key design requirements for designing the accelerator
architecture was to make it flexible in the sense that it can be easily modified to run different
FE schemes with different parameters (i.e., either the FE scheme discussed in Section 2.3 with
various parameter sizes or even a completely different FE scheme based on large integer modular
arithmetic). To achieve this, it was chosen to implement it with a microcode-based architec-
ture where the SW side can configure the HW side to implement different functionalities just by
providing new microcodes (i.e., without the need to reprogram the FPGA).

The FPGA side of our architecture is built around a multi-core structure that consists of M
clusters each including N cryptoprocessor (CP) cores. In the prototype implementation of our
architecture on the ZedBoard, we have selected M = 6 and N = 2. A CP core is the main element
of our architecture that performs the actual large integer arithmetic. The rest of the architecture
is, in principle, for controlling the CP cores and providing data to them efficiently. To achieve
this, the HW side connects to the SW side through four parallel AXI-ports for data transfers
and general-purpose ports for control signals. To reduce the need of data transfers between the
HW and SW sides, the architecture has a three-level data memory hierarchy: (1) Local memory
in each CP core (i.e., L1), (2) Shared memory for all CP cores in the FPGA (i.e., L2), and (3)
SW side memory consisting of an off-chip DDR3 memory and on-chip caches (i.e., L3). The SW
side transfers operands from L3 memory into the L1 memory of a CP core before operations and

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 14 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

AXI Peripheral

Interconnect

Snoop ControllerOn-Chip

Memory
(256 KB)

CPU_0

(ARM Core)
MMU

I-Cache
(32 KB)

D-Cache
(32 KB)

MMU

I-Cache
(32 KB)

D-Cache
(32 KB)

512 KB L2 Cache & Controller

G

I

C

Application Processor Unit (APU)

Programmable Logic to

Memory Interconnect

Memory Interface

DDR3

Controller

I/O Peripherals
(GigEthernet, UART, USB, ...)

Other Memory

Interfaces

M
u
ltip

lex
ed I

 /
 O

Clock Generation Reset

SW Side (Processing System)

DDR3

Memory

IRQ

IRQs

AXI Memory

 Interconnect_4

AXI

DMA_1

. . .

AXI

DMA_2

AXI

DMA_M

. . .

. .
 .

. . .

. .
 .

. . .

. .
 .

. . .

. .
 .

AXI Memory

Interconnect_3AXI Memory

Interconnect_2AXI Memory

Interconnect_1

Parallel DMA Blocks

Cluster_1

I / O

Cluster_2

Cluster_M

RD_CHNL

WR_CHNL

RD_CHNL

WR_CHNL

RD_CHNL

WR_CHNL

. . .

.

AXI Peripheral

Interconnect_1

HW Side (Programmable Logic)

. . .

(M N) Commands

.
 .

 .
Status

Shared

Level-2 DMEM

(144 Kb)

(512 MB)

DDR3

I / O Data

Parameters

PU/PR Key

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

TRQs

ACKs

.
 .

 .
CP

Core_1

CP

Core_2

. . .

D
eM

u
x

CP Core_N

StatusCommand .
.
.

TRQ

ACK

Data

.
.
.

A
X

I In
terface

Multi-Core
Structure

Control Unit

Arithmetic Unit

(72 Kb)

IMEM

(28 Kb)DMEM

L1_DMEM

L2_DMEM

L3_MEM

Data

of Clusters: M

of Cores per Cluster: N

of total Cores: (M × N)

High-Performance Ports

Memory

FSMs

& Ctrl.

Smart Router

. .
 .

FSMs & Control
(TRQ Circular Scanning)

In
terco

n
n
ect

ClockReset

.

HP0

HP1

HP2

HP3

HP0

HP1

HP2
HP3

GP0

GP1

Microcodes

CPU_1

(ARM Core)

Off-Chip

Memory

G
en

er
al

-P
u
rp

o
se

 P
o
rt

s

. . .

. . .

. .
 .

AXI GPIO_1

AXI GPIO_ (M × N + 1)

.

. . .

. . .

. .
 .

. . .

.

Central Interconnect

×

Figure 6: High-level architecture of HW/SW codesign of our multi-core architecture
for multi-input FE from Paillier encryption

reads the results back in the end. L2 memory enables faster data sharing between the CPs during
computations by removing the need to move data to and from the SW side.

Fig. 7 shows the details of the CP core. One CP core consists of an arithmetic unit, a data memory
(DMEM) unit (L1), an instruction memory (IMEM) unit, an address generation and control unit,
and external interfaces (AXI blocks in Fig. 7). The main component is the arithmetic unit that
performs the modular integer arithmetic with (1) a modular multiply-add accumulator unit, which
is implemented by using hardwired multipliers in the DSP slices, (2) a modular adder/subtractor
unit, and (3) registers and multiplexers. The width of the datapath was chosen to be 72 bits
in order to efficiently map it into the DSP slices. DMEM and IMEM were implemented with
embedded memory blocks configured as simple or true dual-port RAMs.

The CP core performs modular arithmetic in the Montgomery domain [41] in order to efficiently
support multiple moduli. The values of Montgomery reduction that depend on the modulus are
precomputed in the SW side and transferred into all CP cores. The main operations needed
for multi-input FE computations are modular multiplications and modular exponentiations, and
are performed with radix-2k Montgomery modular multiplication and left-to-right square-and-
multiply modular exponentiation, respectively.

Encryptions are performed so that each user computes the algorithm of Fig. 2 independently of
other users as shown in Fig. 5. The best way to utilize the parallelism offered by the multi-core
architecture is to distribute the m + 1 modular exponentiations of Fig. 2 to different CP cores.
No interaction between the CP cores is needed here because all m+ 1 elements in the ciphertext
vector ci are computed independently of each other.

Decryptions are executed with the algorithm of Fig. 3 by the evaluator alone. The parallelism
of the multi-core architecture could be utilized mainly in two ways: (1) each individual input

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 15 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

IN_REG_0

IN_REG_1

IN_REG_2

72

72

72 72

72
OUT_REG

Modular Multiply-Add

Accumulator Unit

(MMAA Unit)

In0

In1

In2

Modular Adder /

Subtractor Unit

(MAS Unit)

In0

In1

AUX_REG

IN_REG_0

IN_REG_1

IN_REG_2 1-bit Left Shift Logic

(<< 1)

LCR_1

+1

–1

LCR_2

+1

–1

LCR_6

+1

–1

LCR_7

+1

–1

RDR1_1

RDR1_2

RDR1_3

RDR2_1

RDR2_2

RDR2_3

CVR_1

CVR_2

CVR_3

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

WRR_1

WRR_2

WRR_3

Adder

(+)

Adder

(+)

Adder

(+)

Stack
REG_0

Stack
REG_1

Stack
REG_2

Stack
REG_3

Stack

Pointer

+1

–1

+1

IMEM Address

Controller

FSM & Controller

L1 ↔ L2 DMEM

AXI FSM & Controller

L3 ↔ L1 DMEM / IMEM

Integer_Value

Next_IMEM_Address

56-bit Arithmetic & Control Instruction Set

...

Arithmetic Instructions Control Instructions

Command

Status

TRQ

ACK

L2_DMEM_IF

AXI_L3_Interface

Control & Arithmetic

Sides Signals

L1_DMEM

L1_DMEM

IMEM_Interface

D
in

A
d

d
r

W
rE

n
D

o
u

t

Din, Addr, WrEn

ADDR

RD_1

ADDR

WR

ADDR

RD_2

True Dual-

Port RAM

TDP_BRAM

(72 Kb)

Simple Dual-

Port RAM

SDP_BRAM

(72 Kb)

Simple Dual-

Port RAM

SDP_BRAM

(28 Kb)

ADDR_RD_1

ADDR_WR

ADDR_RD_2

72

72

72

Out1

WrEn

Out2

10

10

10

10

10

10

In

72

0

0

72

72

72

72

72

72

72

Outlow

Outhigh

72
Out

1
Carryout

D
M

E
M

_
IN

72

72

72

72

72 72
1

MSB: [71:71] EXTmsb

1

72

72

0

0

0

0
0

0

0

00

0

0

0

0

0

8

8

8

8

8

8

LCR

10

RDR1

10

RDR2

10

WRR

10

Integer_Value

8

CVR

8LCR

1

10

CR?
= =

IMEM_Interface

56

56

9

IM
E

M
_

O
U

T

(MicroCode_WR_IF)

9

9

WrEn

C
a
rry

o
u
t

E
X

T
m

sb

C
R

C
all

 /
 Ju

m
p

R
etu

rn

E
n

d
_

o
f_

R
u

n

Micro-Code

External Interface Side

A
rith

m
etic S

id
e

IM
E

M
 S

id
e

D
M

E
M

 S
id

e
A

d
d

ress G
en

era
tio

n
 a

n
d

 C
o

n
tro

l S
id

e

Fetching

Figure 7: The architectural diagram of the CP core

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 16 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

from the users, which requires the computation of a single-input FE decryption, is distributed
to different CP cores or (2) the m + 1 modular exponentiations required in the single-input FE
decryption of each individual input are distributed to different CP cores so that one CP core
computes all exponentiations for a specific j for all users i = 0, . . . , n − 1. The former is both
simpler and more efficient. The latter suffers from the fact that one of the exponentiations (i.e.,
pdii in line 3 of Fig. 3 that relates to ci,0) is the dominant one because the rest (i.e., c

yi,j
i,j+1 for

j = 1, . . . ,m in line 5 of Fig. 3) are considerably simpler in practice, as yi,j are likely to be small;
we consider 8-bit yi,j for evaluating our prototype in Section 4. Yet another way to utilize paral-
lelism would be to devote different decryptions to different cores, but this is straightforward and
beneficial only if there are very large numbers decryptions that must be evaluated simultaneously,
and therefore we do not consider it further in this deliverable.

We provide both resource requirements and performance results of this accelerator architecture
for computing the multi-input FE scheme from [2] in Section 4.

3.2 Lattice-based FE schemes

Lattice-based cryptography builds upon polynomial rings. Therefore, the two critical components
for the implementation of lattice-based FE schemes are noise sampling and polynomial arithmetic.
We elaborate on these components below.

3.2.1 Noise sampling

Sampling from a particular noise distribution is crucial in lattice based cryptography. Although
in earlier works this noise used to be sampled from a discrete Gaussian distribution, the current
trend is to sample from a centered binomial distribution. Due to their simple operations, bino-
mial samplers are both fast and easy to protect against side-channel attacks. For most cases,
changing from Gaussian distributions to binomial distributions does not reduce the security of
the cryptosystem.

Unfortunately, as the current constructions of FE schemes are very complex and it is hard to prove
their security using binomial distributions, we are bound to use discrete Gaussian distribution.
It should also be noted that the standard deviations σ of discrete Gaussian distributions used
in inner product FE schemes are very high and increases with the length of the vectors and the
bound of each element. Some recent works show that it is possible to sample from Gaussian
distributions with smaller σ [34, 36, 30], but these methods do not scale very well with increasing
σ.

One possible solution to overcome the problem of sampling with large σ in constant-time is to
use Gaussian samplers with small σ as a base sampler and then combine samples to generate
samples from discrete Gaussian distributions with larger σ [42, 40]. There are some methods
available on combining samples from smaller distributions to generate samples from distributions
with larger σ. One such method is using Kullback-Liebler divergence, which is Rényi divergence
of order 1 [10] as shown by Pöppelman et al [42]. To generate a sample x ← σ, two samples
x1, x2 ← σ1 are generated, and combined as x1+k1x2. The σ, σ1 and k1 are related as σ1 = σ√

1+k21
.

The cryptosystem can be proven secure if the Kullback-Leibler divergence of the sampled data
created in this way from the actual distribution is ≤ 2−S where S is a security parameter.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 17 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

This splitting can be further extended to one more level. We split σ1 such that σ2 = σ1√
1+k22

.

Hence, a sample x ← σ can be generated by 4 samples x1, x2, x3, x4 ← σ2 and combined as
x = (x1 + k2x2) + k1(x3 + k2x4). Such splittings can go on until the final σ is small enough to
be generated in constant-time as described in [34, 36, 30].

However, over the course of this work some methods have been discovered [51, 31, 52] which can
generate samples from large standard deviation and arbitrary centers in constant-time. However,
the exact samplers to be used in our samplers can be decided after the parameters have been
deduced as mentioned in Sec.2.4.

3.2.2 Polynomial arithmetic

The elements of lattice-based cryptosystems are operated with modular arithmetic, typically us-
ing a prime modulus, which adds an extra complexity to the implementation. Even for simpler
primitives such as key encapsulation mechanisms and digital signatures, the polynomial multi-
plication has proven to be the bottleneck for the performance of lattice-based cryptography. To
achieve a desired level of security (e.g., 128 bits), FE schemes require polynomials of even higher
degree as well as larger modulus when compared to simpler cryptographic constructions. This
renders polynomial multiplication a critical component in our implementations.

Most commonly, a polynomial is represented by its coefficients so that it can be considered
as a vector of length N , where N − 1 is the degree of the polynomial. This representation
allows for certain operations such as addition of two polynomials, evaluation of a polynomial at
a point or inner product of two polynomials to be performed in linear time O(N). However,
the time complexity of polynomial multiplication, which is the core operation for lattice-based
cryptosystems, is quadratic in the number of coefficients O(N2) with this representation.

Approaches to improve the time complexity of this operation are built upon representing the
polynomial as a set of point-value pairs [19]. The product of two polynomials in the point-value
domain is computed as a point-wise product with linear complexity in the number of points
O(N). Therefore, the overall complexity of this method will derive from the complexity of
performing the evaluation of the polynomial, or its inverse operation, the interpolation. The
most straightforward method is Karatsuba’s algorithm [33], where the polynomials are split into
two and the final result can be obtained from three multiplications of polynomials with halved
length. This algorithm can be applied recursively to get a time complexity O(N log2(3)). Toom-
Cook k-way is a generalization of Karatsuba’s algorithm where the polynomial is evaluated in k
points instead of only two. Finally, if the evaluation points are chosen carefully, a variant of the
Fourier transform which works on integer arithmetic, namely NTT, can be utilized to achieve
a quasilinear time complexity O(N logN). Furthermore, NTT has proven to be particularly
efficient when implemented on hardware [43].

The other implementation issue has to do with the modular arithmetic. In order to achieve
the desired level of security the modulus q becomes a large prime number. In software, this
translates into the need for multi-precision modular arithmetic, which penalizes the performance.
In hardware, custom data-width is available, however, the throughput of the system would suffer
a deterioration because large values have longer delay chains. To mitigate this issue, we plan
to use a Residue Number System for carrying out the modular arithmetic. The basic idea is to
select the modulus q as a product of smaller prime moduli qi and split the computations using
the Chinese reminder theorem. A similar idea has already been applied successfully, e.g., to RSA

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 18 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

and fully homomorphic encryption to speed up the non-linear operations [11]. This approach
is beneficial on software platforms since it avoids the costly multi-precision arithmetic, but it is
even more advantageous on hardware where the computations for each of the smaller moduli can
also be parallelized.

Our investigations show that the polynomials used in the RLWE based FE scheme described in
Sec. 2.4 can be of length upto 2048. Multiplying such large polynomials is a challenging task. As
evident from the above discussion the obvious choice for multiplying such polynomials is NTT
polynomial multiplication due to its asymptotical faster running time. The butterfly operations of
NTT accesses the coefficients of polynomials non-consecutively such as 0−16−32−48− . . .−2048
or 0 − 256 − 512 − 768 − . . . − 2048 etc. The impact of such memory accesses are not captured
in the asymptotical runtime calculations and often nullifies the computational advantage of NTT
as shown in [35].

Our approach to overcome this problem is using Toom-Cook or Karatsuba based methods with
NTT. As discussed before the former methods are good at replacing a large polynomial multi-
plication with multiple smaller polynomial multiplications, e.g. a polynomial multiplication of
length 2048 can be performed by 3 polynomial multiplications of length 512 or 7 polynomial mul-
tiplications of length 256 using Karatsuba and Toom-Cook 4-way respectively with addition of
some extra overhead. Recently, in our work [38] we proposed different techniques to improve the
Toom-Cook or Karatsuba based polynomial multiplications by reducing different overheads to a
great extent. Using these techniques the integration of Toom-Cook and NTT based polynomial
multiplication can be made more seamless. We hope that a new multiplication strategy combining
Toom-Cook and NTT can be helpful in speeding up RLWE based FE schemes significantly.

3.3 Cryptographic Pairings

The main objective in designing the architecture for pairings is to have a compact and pro-
grammable (support for many types of pairings and parameters) yet high-performance core for
cryptographic pairing computations. Our architecture is constructed as a generic HW/SW code-
sign and can be instantiated in various programmable SoC with minor modifications. However, in
this deliverable, we consider mainly instantiations in Xilinx all-programmable SoC because we use
Avnet ZedBoard and Xilinx ZCU102 evaluation kits for prototyping. We will refer to the specific
features of those programmable SoC whenever such a distinction is required. Also, to provide
programmability and to decrease resource utilization, the HW part of our architecture uses a
microprogramming appraoch instead of implementing hardwired FSM for the specific algorithms
of pairing computations. It is also noteworthy that this HW/SW codesign is very similar to the
architecture for multi-input FE schemes based on large integer modular arithmetic discussed in
Section 3.1 and, thus, the pairing implementation can be easily integrated together with it as we
shortly discuss later in Section 3.4.

Fig. 8 illustrates the high-level architecture of the HW/SW codesign which is divided into two
main parts including SW and HW sides (called PS and PL in Xilinx terminology, respectively).
The SW side consists of ARM core(s), on-chip and off-chip (i.e., DDR3) memories, and other
interconnection and control. The HW side consists of PCP and supporting modules. The data
and control communications between the SW and HW sides are based on the capabilities of
the specific programmable SoC, and we use the AXI HP and GP interfaces of Xilinx SoC. The
HP interface is employed for high-performance transfer of data and microcodes, and the GP

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 19 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Snoop Control unit

On-Chip

Memory

CPU (s)

(ARM Core (s))

Cache and Controller

Application Processor Unit

Programmable Logic to

Memory Interconnect

Memory Interface

DDR3

Controller

I / O

Peripherals

SW Side (Processing System)

IRQ

AXI DMA

Block

AXI Memory Interconnect

I/O

RD_CHNL

WR_CHNL

Command

Status

DDR3

I / O Data

Parameters

A
X

I_
IF

s
HW Side

(Programmable Logic)

High-Performance Ports

Memory

HPx

Microcodes Central

Interconnect

Reset

GPx

General-Purpose Ports
IRQs

Off-Chip
Memory

Pairing CP (PCP)

Control Unit

Arithmetic Unit
(Datapath)

Inst.-

MEME
x
t.

 I
n
te

rf
ac

e
U

n
it

(F
S

M
s

&
 C

o
n
tr

o
l)

Data-

MEM

AXI Peripheral
Interconnect

Gen.
Clock

Sub-routines

HW Computing IP-Core

GIC

AXI GPIO

AXI GPIO

P
ro

ce
ss

o
r

S
y
st

em
 R

es
et

Figure 8: High level architecture of the HW/SW codesign for the pairing

interface is used for transferring commands and status (see Fig. 8). The SW side is responsible
for controlling the HW side and external peripherals. Specifically, the SW side performs the
high-level control and managing of the execution-flow of the pairing computation.

3.3.1 Pairing Cryptography Processor (PCP)

The cost of a pairing computation is generally expressed by the total number of required field op-
erations (i.e., multiplications, additions/subtractions, constant-multiplications, and inversions).
Moreover, the efficiencies of the architecture and the scheduling technique of field operations are
the main factors that determine the overall performance of a pairing implementation [25]. The
main objective in designing the PCP is to achieve a good trade-off between programmability,
speed, and area requirements and to efficiently utilize the resources of modern FPGA (e.g., DSPs
and BRAMs) in implementing base field arithmetic (i.e., arithmetic in Fp). Because the tower
extension field arithmetic is ultimately based on Fp arithmetic, this allows us to efficiently imple-
ment different arithmetic operations in Fp2 , Fp4 , Fp6 , and Fp12 (tower field arithmetic).

Fig. 9 depicts the architecture of the PCP, which contains external interface, arithmetic (data-
path), control, DMEM, and IMEM units. The external interface unit is used for command,
status, data, and microcode communication with the external modules. The arithmetic unit per-
forms the arithmetic operations in Fp with a datapath that consists of three parallel multiplier
and two adder/subtractor units. This datapath allows efficient computation of tower field arith-
metic. The computations can be arranged so that only multiplications are in the critical path
(additions/subtractions are computed simultaneously with multiplications). The IMEM stores
microcodes for algorithm(s) that are run in the PCP. The control unit generates addresses for
DMEM and makes decisions for loop iterations and conditional statements. The inputs and out-
puts of the arithmetic unit are connected to DMEM, which stores data that is required during
an algorithm run. DMEM is a duplicated 1024× 256-bit true dual-port RAM with two indepen-
dent read and write ports and supports “4-read”, “2-write”, or “2-read and 1-write” operations

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 20 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

D
M

E
M

 U
n

it

WR_D13

True Dual-Port

RAM

TDP_BRAM

(256 Kb)

Out1

(1024×256 bit)

True Dual-Port

RAM

TDP_BRAM

(256 Kb)

(1024×256 bit)
Out2

Out3

Out4

In1

In2

In3

In4

WR_D24

R
D

_A
1

 /
 W

R
_A

1
3

R
D

_A
2

 /
 W

R
_A

2
4

R
D

_A
3

 /
 W

R
_A

1
3

R
D

_A
4

 /
 W

R
_A

2
4

In1_X

Ext.-IF↔DMEM

MMMB_u1

X Y

Zp'p

Register p

Out_u1 Out_u2 Out_u3 Out_u4

Out13 Out24

Arithmetic Unit (Datapath)

IMEM Address

Controller & FSMs

Simple Dual-

Port RAM

SDP_BRAM

(72 Kb)

IM
E

M
_O

u
t

Microcode Fetching

(1024×72 bit)

Ext.-IF ↔ IMEM
(Instructions loading IF) IMEM Unit

C
o

n
tro

l U
n

it

Arithmetic unit’s control signals

DMEM Read / Write

Address (RD/WR_Axx)

Generation

Constant Value Registers

Address Index Registers

Loop Counter Registers

Register Bank

Controller

and FSMs

PCP Instruction SetMSB LSB

Two stage pipelined for p addition and subtraction

X Y

Z

p

Adder/Subtractor (+ / –) Block

add/sub

Selector

Logic

Adder/Subtractor (+ / –) Block

MASB

In1_Y In2_X

MMMB_u2

X Y

Zp'p

In2_Y In3_X

MMMB_u3

X Y

Zp'p

In3_Y

In4_X

MASB_u4
X Y

Zp

In4_Y

E
x

t.-IF
 ↔

 IM
E

M
(In

stru
ctio

n
s lo

ad
in

g
 IF

)

Arith. and Ctrl. Signals
O

u
t_u

5

In
5
_
X

M
A

S
B

_
u

5

Y

Z

p

In
5
_
Y

X

Command

Status

AXI_RD_IF

AXI_WR_IF

External Interface Unit
(IF_Logics, RAM, and FSMs)

Ext.-IF↔DMEM

WE13 / 24

Register p'

Figure 9: Architecture of the pairing cryptography processor PCP

from/to DMEM. This facilitates efficient scheduling and parallelization of Fp arithmetic. DMEM
is also interfaced with the external interface unit for communicating data with the SW side.

3.4 Integrating Multi-CP and PCP Cores in a HW/SW Codesign

In this deliverable, we integrated the previous multi-CP core architecture from Section 3.1 and
PCP core from Section 3.3 in the same HW/SW codesign to be able to evaluate, implement, and
accelerate advanced FE schemes that require both large integer modular arithmetic and crypto-
graphic pairings. The integrated architecture is also organized as a generic HW/SW codesign
and can be instantiated in various programmable SoC with minor modifications. However, we
consider mainly instantiation in Xilinx all-programmable SoC because we use a Xilinx ZCU102
evaluation kit for prototyping. This evaluation kit includes a Xilinx Zynq UltraScale+ MPSoC
ZU9EG chip (i.e., xczu9eg-2ffvb1156e) featuring a quad-core ARM Cortex-A53 processor run-
ning up to 1.5GHz in the SW side and a 16nm FinFET+ based FPGA in the HW side. Such a
programmable SoC allows a significantly more powerful instance of our HW/SW codesign to be
implemented in a single chip. In our first prototype, we considered to separate clock domain for
CP cores (i.e., clock domain 1) and PCP core (i.e., clock domain 2) in the HW side. Also, we
implemented 16 CP cores (8 clusters with 2 CPs in each cluster) and a PCP core into the FPGA
(i.e., HW side). Total percentages of the resource utilization of the HW side (i.e., FPGA) in
Xilinx ZU9EG chip are about 26 % of LUTs, 16 % of flip-flops, 42 % of CLBs (each CLB contains
one slice and each slice provides eight LUTs and sixteen flip-flops), 14 % of BRAMs, and 12 % of
DSPs. Also, the maximum clock frequency of the domain 1 and 2 of the HW side are 184 and
230 MHz, respectively.

Fig. 10 describes the high-level architecture of the integrated HW/SW codesign system. This
figure illustrates the block diagram of the HW/SW codesign which is designed in Xilinx Vivado

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 21 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 10: High-level block diagram of the integrated multi-CP core architecture and
PCP core in a HW/SW codesign (high-level blocks and interconnects are shown)

2019.1 tool. As mentioned before, the HW/SW codesign of the PCP is very similar to the
architecture for multi-input FE schemes based on large integer modular arithmetic (i.e., multi-
CP core architecture) discussed in Section 3.1 and, thus, the pairing implementation can be easily
integrated together with it in a HW/SW codesign. As shown in Fig. 10, the green area is related
to the multi-CP core architecture and the orange area is related to the PCP core architecture
and both of them are located in HW side (i.e., FPGA). Furthermore, the red area shows the
processing system side (i.e., SW side). The described HW/SW codesign is implemented and
then, extracted in the Xilinx software development kit (SDK), and in the next step, we are going
to develop and extend the SW side programs as well as real-time operating system (RTOS) for
a quad-core ARM processors (e.g., preparing hardware platform codes, board support packages,
first start boot loader, application routines, and etc.). Finally, we will be able to evaluate and
realize the high-level FE schemes in our system.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 22 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

4 Results

This section provides the results of the architectures discussed in Section 3.1 and Section 3.3 for
(multi-input) FE using large integer modular arithmetic (in particular, Paillier encryption) and
cryptographic pairings, respectively.

4.1 Results for multi-input FE from Paillier encryption

The architecture of the multi-input FE scheme based on Paillier encryption that was introduced
in Section 3 was compiled for the Xilinx Zynq-7020 xc7z020clg484-1 SoC that is on the selected
Avnet ZedBoard development kit. The FPGA area requirements of the architecture are presented
in Table 1 both for a single CP core and for the whole architecture with the selected parameters
M = 6 and N = 2. These parameters were chosen because they fully utilize the available
resources. They show that the critical resource is the number of available slices as almost all of
them (98.47 %) are used by the current architecture. Also, the DSP utilization is high, which
was expected because one of the design goals of the architecture was to efficiently utilize them
for efficient modular multiplication.

The architecture is generic in the sense that it can be used for many cryptosystems that utilize
modular arithmetic with large integers (e.g., RSA). In this deliverable, we focus solely on using it
for (multi-input) FE. Table 2 collects performance characteristics of the architecture for different
basic modular operations with different modulus sizes.

Table 3 collects the performance results computing the multi-input FE scheme discussed in Sec-
tion 2.3. We provide the results for three parameter sets: small (n = 4, m = 16), medium
(n = 16, m = 32), and large (n = 64, m = 64). For all sets, the security parameter was chosen
to be κ = 2048 and the inner product operands and result sizes to be ` = 28 and L = 232,
respectively. Performance values are provided for both encryption and decryption (inner product
computation). Notice that encryption values are for a single user encrypting his/her input of
length m whereas decryption values are for the whole inner product computation with inputs
from all n users.

Comparable SW results for the same functionality are not available which complicates perfor-
mance comparisons between our multi-core FPGA-based architecture and SW implementations.
We wrote Python (v. 2.7.10) implementations of the same scheme using standard Python func-
tions (e.g., pow for modular exponentiations) for test vector generation purposes and, in that
implementation, the encryption and decryption algorithms provided in Fig. 2 and Fig. 3, respec-
tively, take several seconds to complete with the same parameter sizes. These numbers are not
directly comparable because the Python code has not been optimized for performance with sim-
ilar effort levels as our FPGA implementation. Nevertheless, they imply that our FPGA-based
accelerator will be able to deliver major performance advantages for multi-input FE computa-
tions.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 23 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Component (#)
LUTs

(53200)
Registers
(106400)

Slices
(13300)

BRAMs
(140)

DSPs
(220)

Single cp-core design

External interface unit 73 54 28 0 0

Arithmetic unit
MMAA 690 1295 314 0 16
MAS 152 1 58 0 0
Other 178 387 75 0 0

Data memory unit 164 0 86 4 0

Control unit 327 196 111 0 0

Instruction memory unit 197 0 91 1 0

Total resource usage
1781
3.35 %

1933
1.82 %

763
5.74 %

5
3.57 %

16
7.27 %

Multi-cp-core design (M = 6, N = 2, and # of total cp-cores = 12)

AXI memory
interconnects (3)

Min. 1969 1932 755 0 0
Max. 1976 1932 822 0 0

AXI DMAs (6)
Min. 2105 3490 1101 3 0
Max. 2120 3490 928 3 0

Clusters
(6)

Min.
CP-core-1 1779 1933 735 5 16
CP-core-2 1783 1933 772 5 16
FSMs 138 109 89 0 0

Max.
CP-core-1 1787 1933 761 5 16
CP-core-2 1775 1933 758 5 16
FSMs 143 109 95 0 0

Smart router and L2-DMEM 377 4 200 4 0

AXI peripheral intercon. (1) 1092 1020 568 0 0

AXI GPIOs (13)
Min. 55 121 35 0 0
Max. 62 237 71 0 0

Processor system reset 17 19 13 0 0

Total resource usage
42871
80.58 %

53328
50.12 %

13096
98.47 %

82
58.57 %

192
87.27 %

Table 1: Summary of resource requirements in Xilinx Zynq-7020 xc7z020clg484-1.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 24 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Operation Length λ (bit)
Latency
(# of FPGA
side clocks)

Execution Time
(single cp-core)
FPGA: 1×@122 MHz
ARM: @ 666.67 MHz

Max. Throughput (ops)
(multi-cp-core)
FPGA: 12×@122 MHz
ARM: @ 666.67 MHz

MA/MS

1024 38 0.311 µs 38526312
2048 66 0.541 µs 22181808
4096 122 1.000 µs 12000000
8192 236 1.934 µs 6203388

MR

1024 530 4.344 µs 2762256
2048 1426 11.689 µs 1026636
4096 4394 36.016 µs 333180
8192 15281 125.254 µs 95796

MM

1024 617 5.057 µs 2372771
2048 2003 16.418 µs 730903
4096 7127 54.418 µs 205416
8192 27248 223.344 µs 53728

ME-1 a

1024 950810 7.794 ms 1539
2048 6159400 50.487 ms 237
4096 43800644 359.022 ms 33
8192 334848125 2744.657 ms 4

ME-2 a

1024 478231 3.920 ms 3061
2048 3086904 25.302 ms 474
4096 21917877 179.655 ms 66
8192 167456672 1372.596 ms 8

ME-3 a

1024 7455 61.107 µs 196376
2048 24081 197.385 µs 60794
4096 85573 701.418 µs 17108
8192 327015 2680.451 µs 4476

a Modular Exponentiation-1, 2, and 3 (i.e., ME-1, ME-2, and ME-3) with exponent length
t = λ, λ/2, and 8-bit and Hamming weight of the exponent HW -Exp = λ/2, λ/4, and 4,
respectively, where λ ∈ {1024, 2048, 4096, 8192}. For all cases, modulus length is λ bits.

Table 2: Performance characteristics of the designs in Xilinx Zynq-7020
xc7z020clg484-1 FPGA, including both single CP-core and multi-CP-core HW/SW
co-designed systems.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 25 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Multi-Input FE Operation
(Security parameter κ = 2048)

HW/SW Multi-Core System (This work)
Latency (# of clocks) Total Execution

Time (ms)FPGA (HW) ARM (SW)

MIFE Encryption
Small (m = 16) 43863516 270504 359.943
Medium (m = 32) 65795274 399126 539.904
Large (m = 64) 131590548 784992 1079.788

MIFE Decryption
Small (n = 4, m = 16) 45298890 77269998 487.207
Medium (n = 16, m = 32) 93706204 310868766 1234.384
Large (n = 64, m = 64) 299424756 1249220622 4328.123

Table 3: Performance characterization of the multi-input FE scheme based on the
Paillier cryptosystem on the proposed HW/SW multi-core accelerator system.

Component LUTs Registers Slices DSPs BRAMs

PCP Core 8516 9641 3178 36 17
MASB 460 474 180 0 0
MMMB 1941 2292 822 12 0
External Interface 68 45 21 0 1

Xilinx IP-Cores 3987 5839 1725 0 3

Total Usage % 23.6% 14.5% 37.0% 16.4% 15.0%

Table 4: HW Side Resource Utilization of the PCP HW/SW codesign in Zynq-7020
SoC Prototype

4.2 Results for pairing computations

To evaluate the performance of the HW/SW codesign, we implemented it on real hardware using
Avnet Zedboard with a low-cost Xilinx Zynq-7020. The target chip includes a dual-core ARM
Cortex A9 and an Artix-7 FPGA. For the SW side, we used C++ and Xilinx software development
kit for developing software for a real-time operating system (RTOS). For the HW side, we used
Verilog (HDL) and Vivado for implementing the design to the FPGA. The resource requirements
are summarized in Table 4. The maximum clock frequencies for the FPGA and ARM are 105 and
667 MHz, respectively. Based on Vivado, the total power consumption of the chip is about 1.9W.
All results are final post-place&route results and validated with real hardware, unless mentioned
otherwise. Table 5 gives the number of clock cycles to compute different parts of Fig. 4 over the
BN126 curve from [14] in the FPGA.

In addition to the above primary platform, we implemented the architecture also on other plat-
forms. To demonstrate the generality of our HW/SW codesign and its efficiency on a modern
programmable SoC, we implemented it also on a Xilinx Zynq UltraScale+ MPSoC ZU9EG chip
featuring a quad-core ARM Cortex-A53 processor running up to 1.5GHz in the SW side and a
16nm FinFET+ based FPGA in the HW side. To enable fair comparisons with other pairing
designs, we implemented the HW side on a Xilinx Virtex-6 FPGA device. Table 6 reports the
performance characteristics of implementation in the above platforms. The results are for opti-
mal ate pairing implementation over BN126 curve. Also, Table 7 shows a comparative analysis of
hardware and software results of optimal ate pairings over BN curves with 126–128-bit security
levels. It shows that our design, which occupies only 3072 slices, 36 DSPs, and 18 BRAMs in

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 26 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

SW/HW Miller Loop (Lines 2–5) and Lines 7–8 Line 6 Final Exponentiation (Line 9)

IMEM
LD-S/F†

Sqr: f2

∈Fp12
2T ,

lT,T (P)
T +Q,
lT,Q(P)

Mult: f ·
lT,X(P)

Miller-
Loop‡

πp(Q),
πp2(Q)

a−1 ∈
Fp/Fp12

f t ∈Fp12/
Gφ6(Fp2)

Fb:fp
i

∈ Fp12
f · g
∈Fp12

Final
Exp.‡

46 /
1344

475 502 619 513 101286 86
11938 /
13511

34599 /
22707

160 703 103064

† Loading a Segment or Full microcode pack (2.25 or 72 Kbit) into IMEM (IMEM LD-S/F).
‡Cycle counts of IMEM LD-S/F operations are considered.

Table 5: Cycle Counts of the HW Side (FPGA) for Different Steps of Optimal Ate
Pairing Algorithm (Optimal Ate Algorithm of Fig. 4 over BN126 Curve)

Design Platform
(SoC / FPGA Device)

SW/HW
Interface

IMEM
S/F

Packs†

PCP Core in HW Side (FPGA) SW Side
Time†

(ms)
Fmax

MHz
Slices

/CLBs
DSPs RAM

of
Cycles†

Fmax

MHz
of

Cycles†

Zynq-7000 SoC
(xc7z020clg484-1)

64 bit /
AXI HP0

S: 24/F: 8 105
3199‡

24%
36

16.4%
18

12.8%
208146 667 132066 2.18

Virtex-6 FPGA
(xc6vlx240tff1759-3)

64 bit /
HW cfg.

S: 24/F: 8 156
3072‡

8.2%
36

4.7%
18

4.3%
208146 — — 1.33*

Zynq UltraScale+ SoC
(xczu9eg-ffvb1156-2-e)

128 bit /
AXI HP0

S: 24/F: 8 230
1873§

5.5%
36

1.4%
18

2.0%
202098 1200 87465 0.95

† For implementing optimal ate pairing over BN126 curve.
‡ Slices: each slice consists of four LUTs and eight flip-flops.
§CLBs: each CLB contains one slice and each slice provides eight LUTs and sixteen flip-flops.
* Total computation time of the PCP in the HW (FPGA) side without SW side time overhead.

Table 6: Performance Characteristics of the Programmable HW/SW Codesign Sys-
tem in Different Platforms for Pairing Implementation

Virtex-6, compares favorably to other designs in respect to flexibility, programmability, and area
and still offers comparable speed.

It is common and effective to analyze computational costs of pairing algorithms by expressing the
costs of different parts of algorithms with the numbers of Fp and/or Fp2 arithmetic operations.
The costs of additions/subtractions are hidden in our datapath. Furthermore, Fp2 multiplication
and squaring have the same cost due to the pipeline scheme. Hence, we can estimate the costs
of different steps using only the numbers of Fp2 multiplications/squarings. Because each Fp2
multiplication/squaring contains three parallel Fp multiplications/squarings (in our datapath)
and the design computes an Fp2 multiplication/squaring with a latency LM = 38, we estimate
that the total number of clock cycles of a pairing algorithm is as follows:

T = dC × (dMp / 3e × LM + Ip × LI) e, (5)

where Mp and Ip are the numbers of multiplications and inversions in Fp, LI is the latency of an
inversion in Fp, and C is the overhead of loading microcode packs. Based on our experiments,
C ≈ 1.1. For the optimal ate pairing from [14] considered in this work, we have Mp = 14300,
Ip = 1, and LI = 11938 and (5) gives T = 212393. The measurements from real hardware show
that real number is 208146 clock cycles and, hence, the estimate given by (5) has an error of

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 27 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Reference Platform Flexibility
Resource or Area

(Slices / DSPs / BRAMs)
Fmax

(MHz)
of Cycles

(×103)
Tot. Time

(ms)

This work Virtex-6 Yes 3072 / 36 / 18 156 208 1.33

[25] Virtex-6 No 5163 / 144 / 21 166 62 0.38

[17] Virtex-6 No 7032 / 32 / 22 250 143 0.57

[22] Virtex-6 No 4014 / 42 / 5 210 245 1.17

[24] Virtex-4 Yes 52K / – / – 50 821 16.4

[45] Virtex-6 No 9476 / – / – 145 80 0.56

[16] Virtex-6 No 17560 / 11 / – 225 407 1.80

[47] Virtex-6 No 45K / 128 / – 103 395 3.83

[49] Virtex-6 No 7032 / 32 / 48 250 166 0.66

[50] Virtex-6 No 5237 / 64 / 41 210 78 0.34

[46] Virtex-6 No 5570 / 30 / – 225 80 0.35

[29] Virtex-6 No 4380 / 131 / – 125 283 2.26

[44] Zynq 7020 SoC Yes 598 / – / – 324 — 134

[28] ASIC No 323K Gates 633 330 0.52

[21] ASIC No 183K Gates 204 593 2.91

[32] ASIC Yes 97K Gates 338 5,340 15.8

[14] Core i7 Intel Yes — 2,800 2,330 0.83

[5] Phenom II AMD Yes — 3,000 1,562 0.52

[6]
Opteron II AMD Yes — 2,400 1,500 0.62
ARM Cortex A15 Yes — 1,700 6,089 3.58

Table 7: Performance Comparison of HW and SW Implementations of Optimal Ate
Pairing over BN curves (126-128 bit Security)

about 2 %. Table 8 collects estimates of computational costs of different pairing algorithms in
our HW/SW codesign by using (5) and the Fp operation counts available in [32].

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 28 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Pairing over
BN128 curve

of Mult./Squr.
∈ Fp

of Add./Sub.
∈ Fp

of Inversion
∈ Fp

of FPGA
Cycles

Total Time†

(ms)

Optimal ate pairing 17,913 84,956 3 288,984 1.852

Ate pairing 25,870 121,168 2 386,747 2.479

η pairing 32,155 142,772 2 474,318 3.040

Tate pairing 39,764 174,974 2 580,323 3.720

Compressed η 75,568 155,234 0 1,052,942 6.750

Compressed Tate 94,693 193,496 0 1,319,417 8.458

†Total computation time is estimated based on the FPGA cycle counts in Virtex-6 device.

Table 8: Total Calculation Time of Various Pairings on BN Curves (from [32])

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 29 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

5 Conclusions and future work

In this deliverable and in WP5 of FENTEC, the work has focused on FE schemes based on
both large integer modular arithmetic as well as on cryptographic pairings that are used in many
advanced FE schemes that support more complicated functionalities (e.g., quadratic functions)
or additional features. The most significant amount of work in Task 5.2, which is the main focus
of this deliverable, was devoted to multi-input FE schemes based on large integer arithmetic
(particularly, Paillier encryption) and to cryptographic pairings.

We have developed an FPGA-based multi-core architecture for large integer modular arithmetic
described in Section 3 and, as we showed in Section 4, that it can be used for efficient computa-
tion of a multi-input FE scheme based on Paillier encryption proposed by Abdalla et al. in [2].
The results given in Section 4 are promising and indicate that the multi-core architecture can
offer significant speedups for users encrypting their inputs as well as evaluators computing the
inner products. For the latter scheme, we have described our current efforts in instantiating a
single-input FE scheme based on RLWE. We have enumerated the challenges we are currently
facing and presented research directions towards achieving an efficient implementation. We also
described an architecture for efficient computations of cryptographic pairings. It is compact and
supports multiple types of pairings and parameters and still achieves performance levels compa-
rable to larger and less programmable cores available in the literature. We also showcased how
the architecture for FE schemes based on large integer modular arithmetic and the architecture
for cryptographic pairings can be integrated into a single HW/SW codesign in order to support
FE schemes that require both large integer modular arithmetic and pairings.

The next steps to be taken with the multi-core architecture for large integer modular arithmetic
described in Section 3.1 is to combine it with the pairing cryptography processor described in
Section 3.3 and to use it for implementing FE schemes with more expressive functionalities and/or
advanced features. The potential of using the resulting hardware accelerated FE implementation
for speeding up selected FENTEC use cases will be surveyed (e.g., how much speed-up can
be expected). Furthermore, it will be considered whether it makes sense to integrate the FE
implementation into the prototype(s) of the use case(s) for demonstration purposes. The work
related to multi-core architecture for large integer modular arithmetic and pairings has resulted
in a number of manuscripts for scientific articles discussing the use of the architectures described
in this deliverable to different multi-input FE schemes or schemes for certain privacy enhancing
technologies [7, 8, 9]. These manuscripts have been submitted to different venues.

In this period, we have been working together with XLAB and ENS on a new semantically se-
cure RLWE based FE scheme. Also, as a first approach towards hardware acceleration and to
build know-how, we have implemented an arithmetic co-processor for lattice-based key encapsu-
lation [39]. Also, we have very efficient methods for Toom-Cook multiplications [38] that can be
used to break multiplications of large polynomials into multiplications of smaller polynomial which
are both more efficient and easier to implement on both hardware and software platforms.

In the next steps, we will deduce efficient parameters for this FE scheme. Now we are working
on selecting efficient multiplication and noise sampling algorithms that will be used in the RLWE
based FE scheme. In near future we plan to create an efficient multi-core vectorized implementa-
tion for the scheme, with support for different levels of security, different lengths of vectors with
different bounds. These implementations will be lastly ported to dedicated hardware libraries
which can utilize massively parallel hardware such as GPUs and FPGAs.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 30 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

References

[1] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional
encryption schemes for inner products. In Jonathan Katz, editor, Public-Key Cryptography
– PKC 2015, pages 733–751, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. (Pages 6,
7, and 9)

[2] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input
functional encryption for inner products: Function-hiding realizations and constructions
without pairings. In Advances in Cryptology—CRYPTO, volume 10991 of LNCS, pages
597–627. Springer, 2018. (Pages 3, 6, 7, 8, 9, 10, 17, and 30)

[3] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-
product functional encryption from pairings. In Advances in Cryptology—EUROCRYPT,
volume 10210 of LNCS, pages 601–626. Springer, 2017. (Pages 7 and 10)

[4] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In Advances in Cryptology—CRYPTO, volume
9816 of LNCS, pages 333–362. Springer, 2016. (Pages 6, 7, 8, and 9)

[5] Diego F Aranha, Koray Karabina, Patrick Longa, Catherine H Gebotys, and Julio López.
Faster explicit formulas for computing pairings over ordinary curves. In Advances in Cryptol-
ogy — EUROCRYPT 2011, volume 6632 of LNCS, pages 48–68. Springer, 2011. (Page 28)

[6] Reza Azarderakhsh, Dieter Fishbein, Gurleen Grewal, Shi Hu, David Jao, Patrick Longa,
and Rajeev Verma. Fast software implementations of bilinear pairings. IEEE Transactions
on Dependable and Secure Computing, 14(6):605–619, 2015. (Page 28)

[7] Milad Bahadori and Kimmo Järvinen. Compact and programmable yet high-performance
SoC architecture for cryptographic pairings. Submitted, 2020. (Page 30)

[8] Milad Bahadori and Kimmo Järvinen. A programmable SoC based accelerator for privacy
enhancing technologies and functional encryption. Submitted, 2020. (Page 30)

[9] Milad Bahadori and Kimmo Järvinen. A programmable SoC implementation of the DGK
cryptosystem for privacy-enhancing technologies. Submitted, 2020. (Page 30)

[10] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved
security proofs in lattice-based cryptography: Using the rényi divergence rather than the
statistical distance. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptol-
ogy – ASIACRYPT 2015: 21st International Conference on the Theory and Application of
Cryptology and Information Security,Auckland, New Zealand, November 29 – December 3,
2015, Proceedings, Part I, pages 3–24. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
(Page 17)

[11] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A full rns variant
of fv like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Report
2016/510, 2016. https://eprint.iacr.org/2016/510. (Page 19)

31

https://eprint.iacr.org/2016/510

[12] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical
functional encryption for quadratic functions with applications to predicate encryption. In
Advances in Cryptology — CRYPTO 2017, volume 10401 of LNCS, pages 67–98. Springer,
2017. (Page 10)

[13] Manuel Barbosa, Dario Catalano, Azam Soleimanian, and Bogdan Warinschi. Efficient
function-hiding functional encryption: From inner-products to orthogonality. In Topics
in Cryptology — CT-RSA 2019, volume 11405 of LNCS, pages 127–148. Springer, 2019.
(Page 10)

[14] Jean-Luc Beuchat, Jorge E González-Dı́az, Shigeo Mitsunari, Eiji Okamoto, Francisco
Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-speed software implementation of the
optimal ate pairing over Barreto–Naehrig curves. In Pairing-Based Cryptography — Pair-
ing 2010, volume 6487 of LNCS, pages 21–39. Springer, 2010. full version: https:

//eprint.iacr.org/2010/354. (Pages 11, 13, 26, 27, and 28)

[15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product en-
cryption. In Advances in Cryptology—ASIACRYPT, volume 9452 of LNCS, pages 470–491.
Springer, 2015. (Page 7)

[16] Riadh Brinci, Walid Khmiri, Mefteh Mbarek, Abdellatif Ben Rabâa, and Ammar Bouallègue.
Efficient hardware design for computing pairings using few FPGA in-built DSPs. Cryptology
ePrint Archive, Report 2015/116, 2015. https://eprint.iacr.org/2015/116. (Page 28)

[17] Ray CC Cheung, Sylvain Duquesne, Junfeng Fan, Nicolas Guillermin, Ingrid Verbauwhede,
and Gavin Xiaoxu Yao. FPGA implementation of pairings using residue number system and
lazy reduction. In Cryptographic Hardware and Embedded Systems — CHES 2011, volume
6917 of LNCS, pages 421–441. Springer, 2011. (Page 28)

[18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In Ad-
vances in Cryptology—ASIACRYPT, volume 11273 of LNCS, pages 703–732. Springer, 2018.
(Pages 7 and 10)

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition, chapter 30. MIT Press, 2009. (Page 18)

[20] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner
product with full function privacy. In Public-Key Cryptography—PKC 2016, volume 9614 of
LNCS, pages 164–195. Springer, 2016. (Page 7)

[21] Junfeng Fan, Frederik Vercauteren, and Ingrid Verbauwhede. Faster Fp-arithmetic for cryp-
tographic pairings on Barreto-Naehrig curves. In Cryptographic Hardware and Embedded
Systems — CHES 2009, volume 5747 of LNCS, pages 240–253. Springer, 2009. (Page 28)

[22] Junfeng Fan, Frederik Vercauteren, and Ingrid Verbauwhede. Efficient hardware imple-
mentation of fp-arithmetic for pairing-friendly curves. IEEE Transactions on Computers,
61(5):676–685, 2011. (Page 28)

[23] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016. (Page 7)

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 32 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

https://eprint.iacr.org/2010/354
https://eprint.iacr.org/2010/354
https://eprint.iacr.org/2015/116

[24] Santosh Ghosh, Debdeep Mukhopadhyay, and Dipanwita Roychowdhury. High speed flexible
pairing cryptoprocessor on FPGA platform. In Pairing-Based Cryptography — Pairing 2010,
volume 6487 of LNCS, pages 450–466. Springer, 2010. (Page 28)

[25] Santosh Ghosh, Ingrid Verbauwhede, and Dipanwita Roychowdhury. Core based architecture
to speed up optimal ate pairing on FPGA platform. In International Conference on Pairing-
Based Cryptography, volume 7708 of LNCS, pages 141–159. Springer, 2012. (Pages 20
and 28)

[26] Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In
Advances in Cryptology—EUROCRYPT, volume 8441 of LNCS, pages 578–602. Springer,
2014. (Page 7)

[27] S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. Cryptology ePrint Archive, Report 2013/774, 2013. https:

//eprint.iacr.org/2013/774. (Page 7)

[28] Jun Han, Yang Li, Zhiyi Yu, and Xiaoyang Zeng. A 65 nm cryptographic processor for high
speed pairing computation. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 23(4):692–701, 2014. (Page 28)

[29] Zhongyuan Hao, Wei Guo, Jizeng Wei, and Dazhi Sun. Dual processing engine architecture to
speed up optimal ate pairing on FPGA platform. In 2016 IEEE Trustcom/BigDataSE/ISPA,
pages 584–589. IEEE, 2016. (Page 28)

[30] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill. On practical discrete gaussian
samplers for lattice-based cryptography. IEEE Transactions on Computers, PP(99):1–1,
2016. (Pages 17 and 18)

[31] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous gaussian
sampling: From inception to implementation. Cryptology ePrint Archive, Report 2019/1411,
2019. https://eprint.iacr.org/2019/1411. (Page 18)

[32] David Kammler, Diandian Zhang, Peter Schwabe, Hanno Scharwaechter, Markus Langen-
berg, Dominik Auras, Gerd Ascheid, and Rudolf Mathar. Designing an ASIP for crypto-
graphic pairings over Barreto-Naehrig curves. In Cryptographic Hardware and Embedded
Systems — CHES 2009, volume 5747 of LNCS, pages 254–271. Springer, 2009. (Pages 28
and 29)

[33] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by automatic com-
puters. Proceedings of USSR Academy of Sciences, 145(7):293–294, 1962. (Page 18)

[34] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Constant-time
discrete gaussian sampling. IEEE Transactions on Computers, 67(11):1561–1571, Nov 2018.
(Pages 17 and 18)

[35] Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and Ingrid Ver-
bauwhede. Saber on ARM cca-secure module lattice-based key encapsulation on ARM.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):243–266, 2018. (Page 19)

[36] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
Pushing the speed limit of constant-time discrete gaussian sampling. a case study on falcon.

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 33 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

https://eprint.iacr.org/2013/774
https://eprint.iacr.org/2013/774
https://eprint.iacr.org/2019/1411

Cryptology ePrint Archive, Report 2019/267, 2019. https://eprint.iacr.org/2019/267,
to appear in DAC 2019, Las Vegas, NV, USA. (Pages 17 and 18)

[37] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with er-
rors over rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2010. (Page 9)

[38] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede. Time-memory
trade-off in toom-cook multiplication: an application to module-lattice based cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):222–244, 2020. (Pages 19 and 30)

[39] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Sujoy Sinha Roy, and
Ingrid Verbauwhede. Compact domain-specific co-processor for accelerating module lattice-
based key encapsulation mechanism. IACR Cryptology ePrint Archive, 2020:321, 2020.
(Pages 12 and 30)

[40] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient,
generic, constant-time. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryp-
tology – CRYPTO 2017: 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20–24, 2017, Proceedings, Part II, pages 455–485. Springer International
Publishing, Cham, 2017. (Page 17)

[41] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Com-
putation, 44(170):519–521, 1985. (Page 15)

[42] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures on
reconfigurable hardware. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014: 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, pages 353–370. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2014. (Page 17)

[43] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid
Verbauwhede. Compact ring-lwe cryptoprocessor. In Cryptographic Hardware and Embedded
Systems - CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26,
2014. Proceedings, pages 371–391, 2014. (Page 18)

[44] Ahmad Salman, William Diehl, and Jens-Peter Kaps. A light-weight hardware/software
co-design for pairing-based cryptography with low power and energy consumption. In 2017
International Conference on Field Programmable Technology (ICFPT), pages 235–238. IEEE,
2017. (Page 28)

[45] Anissa Sghaier, Loubna Ghammam, Medyen Zeghid, Sylvain Duquesne, and Mohsen Mach-
hout. Area-efficient hardware implementation of the optimal ate pairing over BN curves.
Cryptology ePrint Archive, Report 2015/1100, 2015. https://eprint.iacr.org/2015/

1100. (Page 28)

[46] Anissa Sghaier, Medien Zeghid, Loubna Ghammam, Sylvain Duquesne, Mohsen Machhout,
and Hassan Yousif Ahmed. High speed and efficient area optimal ate pairing processor
implementation over BN and BLS12 curves on FPGA. Microprocessors and Microsystems,
61:227–241, 2018. (Page 28)

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 34 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

https://eprint.iacr.org/2019/267
https://eprint.iacr.org/2015/1100
https://eprint.iacr.org/2015/1100

[47] A Tengfei Wang, B Wei Guo, and C Jizeng Wei. Highly-parallel hardware implementation
of optimal ate pairing over Barreto-Naehrig curves. Integration, 64:13–21, 2019. (Page 28)

[48] Brent Waters. A punctured programming approach to adaptively secure functional encryp-
tion. In Advances in Cryptology—CRYPTO, volume 9216 of LNCS, pages 678–697. Springer,
2015. (Page 7)

[49] Gavin Xiaoxu Yao, Junfeng Fan, Ray C.C. Cheung, and Ingrid Verbauwhede. A high
speed pairing coprocessor using RNS and lazy reduction. Cryptology ePrint Archive, Report
2011/258, 2011. https://eprint.iacr.org/2011/258. (Page 28)

[50] Gavin Xiaoxu Yao, Junfeng Fan, Ray CC Cheung, and Ingrid Verbauwhede. Faster pairing
coprocessor architecture. In Pairing-Based Cryptography — Pairing 2012, volume 7708 of
LNCS, pages 160–176. Springer, 2012. (Page 28)

[51] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. Facct: Fast, compact, and constant-
time discrete gaussian sampler over integers. Cryptology ePrint Archive, Report 2018/1234,
2018. https://eprint.iacr.org/2018/1234. (Page 18)

[52] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. Cosac: Compact and scalable
arbitrary-centered discrete gaussian sampling over integers. Cryptology ePrint Archive, Re-
port 2019/1011, 2019. https://eprint.iacr.org/2019/1011. (Page 18)

Document name: D5.3 Final Report on Hardware-Optimized Schemes Page: 35 of 35

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

https://eprint.iacr.org/2011/258
https://eprint.iacr.org/2018/1234
https://eprint.iacr.org/2019/1011

	Document Information
	Table of Contents
	List of Figures
	List of Acronyms
	Executive Summary
	Introduction
	Purpose of the document
	Structure of the document

	Analysis of FE schemes
	Preliminaries
	Multi-input FE for inner products
	Multi-input FE for inner products from Paillier encryption
	Single-input FE for inner products from RLWE
	Cryptographic pairings and their use in FE
	Requirements for hardware acceleration

	Architectures for the FE schemes
	FE schemes based on large integer modular arithmetic
	Lattice-based FE schemes
	Noise sampling
	Polynomial arithmetic

	Cryptographic Pairings
	Pairing Cryptography Processor (PCP)

	Integrating Multi-CP and PCP Cores in a HW/SW Codesign

	Results
	Results for multi-input FE from Paillier encryption
	Results for pairing computations

	Conclusions and future work
	References

