

Préparée à l’École normale supérieure

Public-Key Encryption, Revisited:

Tight Security and Richer Functionalities

Soutenue par

Romain Gay
Le 18 mars 2019

Ecole doctorale n° 386

Sciences Mathématiques de

Paris Centre

Spécialité

Informatique

Composition du jury :

M. Michel FERREIRA ABDALLA
École Normale Supérieure Directeur de thèse

M. Hoeteck WEE
École Normale Supérieure Directeur de thèse

M. Benoît LIBERT
École normale supérieure de Lyon Rapporteur

M. Katsuyuki TAKASHIMA
Mitsubishi Electric Rapporteur

M. Dario FIORE
IMDEA Software Institute Examinateur

M. Pierre Alain FOUQUE
Université Rennes 1 Examinateur

M. Dennis HOFHEINZ
Karlsruher Institut für Technologie Examinateur

Mme. Huijia LIN
University of Washington Examinatrice

Public-key Encryption, Revisited: Tight Security and Richer

Functionalities

Romain Gay

Supervised by Michel Ferreira Abdalla and Hoeteck Wee

ii

Abstract

Our work revisits public-key encryption in two ways: 1) we provide a stronger security guaran-
tee than typical public-key encryption, which handles many users than can collude to perform
sophisticated attacks. This is necessary when considering widely deployed encryption schemes,
where many sessions are performed concurrently, as in the case on the Internet; 2) we consider
so-called functional encryption, introduced by Boneh, Sahai, Waters in 2011, that permits se-
lective computation on the encrypted data, as opposed to the coarse-grained access provided by
traditional public-key encryption. It generalizes the latter, in that a master secret key is used
to generate so-called functional decryption keys, each of which is associated with a particular
function. An encryption of a message m, together with a functional decryption key associated
with the function f , decrypts the value f(m), without revealing any additional information
about the encrypted message m. A typical scenario involves the encryption of sensitive medical
data, and the generation of functional decryption keys for functions that compute statistics on
this encrypted data, without revealing the individual medical records.

In this thesis, we present a new public-key encryption that satisfies a strong security guar-
antee, that does not degrade with the number of users, and that prevents adversaries from
tampering ciphertexts. We also give new functional encryption schemes, whose security relies
on well-founded assumptions. We follow a bottom-up approach, where we start from simple
constructions that can handle a restricted class of functions, and we extend these to richer
functionalities. We also focus on adding new features that make functional encryption more
relevant to practical scenarios, such as multi-input functional encryption, where encryption
is split among different non-cooperative users. We also give techniques to decentralize the
generation of functional decryption keys, and the setup of the functional encryption scheme,
in order to completely remove the need for a trusted third party holding the master secret key.

iii

iv

Résumé

Nos travaux revisitent le chiffrement à clé publique de deux facons: 1) nous donnons une
meilleure garantie de sécurité que les chiffrements à clé publique typiques, qui gère de nom-
breux utilisateurs pouvant coopérer pour réaliser des attaques sophistiquées. Une telle sécu-
rité est nécessaire lorsque l’on considère des schémas de chiffrement largement déployés, où de
nombreuses sessions ont lieu de manière concurrente, ce qui est le cas sur internet; 2) nous
considérons le chiffrement fonctionnel, introduit en 2011 par Boneh, Sahai et Waters, qui per-
met un calcul sélectif sur les données chiffrées, par opposition à l’accès tout ou rien permis par
les schémas de chiffrement à clé publique traditionnels. Il généralise ce dernier dans le sens
où une clé secrète maîtresse permet de générer des clés de chiffrement fonctionnelles, qui sont
chacune associées à une fonction particulière. Le déchiffrement du chiffrement d’un message m
avec une clé de déchiffrement fonctionnelle associée à une fonction f obtiendra la valeur f(m),
et aucune autre information à propos du message chiffré m. Un scénario typique: des données
médicales privées sont chiffrées, et des clés de déchiffrement fonctionnelles sont générées pour
des fonctions qui permettent de calculer des statistiques, sans révéler les données individuelles
chiffrées.

Dans cette thèse, nous présentons un nouveau schéma de chiffrement à clé publique satis-
faisant une garantie de sécurité forte, qui ne se dégrade pas avec le nombre de clients utilisant
le schéma, et qui empêche les adversaires de modifier activement les chiffrés. Nos donnons aussi
des schémas de chiffrement fonctionnels, dont la sécurité repose sur des hypothèses calcula-
toires robustes. L’approche suivie est bottom-up, où des constructions simples qui permettent
de générer des clés pour une classe restreinte de fonctions sont étendues à des classes de fonc-
tions plus riches. Un intérêt a aussi été porté à l’étude d’améliorations qui rendent le chiffre-
ment fonctionnel plus utilisable en pratique, tel que le chiffrement fonctionnel multientré, où le
chiffrement est partagé entre différents utilisateurs, sans coopération. Nous donnons aussi des
techniques permettant de décentraliser la génération de clés de déchiffrement fonctionnelles,
et la mise en place du schéma de chiffrement, de sorte que la présence d’un tiers de confiance
possédant la clé secrète principale ne soit plus nécessaire.

v

vi

Contents

1 Introduction 1

1.1 Tight Security . 2
1.1.1 State of the Art in Tight Security . 3
1.1.2 Contribution 1: Tightly CCA-Secure Encryption without Pairing 4

1.2 Functional Encryption . 4
1.2.1 State of the Art in Functional Encryption 6
1.2.2 Contribution 2: Functional Encryption with New Features, and Richer

Functionalities . 9
1.2.3 Other contributions . 14

2 Preliminaries 19

2.1 Notations and Basics . 19
2.1.1 Collision resistant hashing . 19
2.1.2 Symmetric-Key Encryption . 20
2.1.3 Authenticated Encryption . 20
2.1.4 Public-Key Encryption . 20
2.1.5 Key-Encapsulation Mechanism . 21

2.2 Cryptographic Assumptions . 22
2.2.1 Prime-Order Groups . 22
2.2.2 Pairing Groups . 23
2.2.3 Matrix Diffie-Hellman . 23
2.2.4 Decisional Composite Residuosity . 26
2.2.5 Learning With Errors . 26

2.3 Definitions for Single-Input Functional Encryption 27
2.3.1 Security notions . 28

2.4 Definitions for Multi-Input Functional Encryption 31
2.4.1 Security notions . 32
2.4.2 Removing the extra condition generically 33

2.5 Definitions for Multi-Client Functional Encryption 35
2.6 Concrete Instances of Functional Encryption for Inner Products 38

2.6.1 Inner-Product FE from MDDH . 38
2.6.2 Inner-Product FE from LWE . 44
2.6.3 Inner-Product FE from DCR . 45

3 Tightly CCA-Secure Encryption without Pairings 47

3.1 Multi-ciphertext PCA-secure KEM . 50
3.1.1 Our construction . 50
3.1.2 Security proof . 51

3.2 Multi-ciphertext CCA-secure Public Key Encryption scheme 60
3.2.1 Our construction . 60

3.3 Security proof of PKE . 62

vii

viii CONTENTS

4 Multi-Input Inner-Product Functional Encryption from Pairings 75
4.1 Selectively-Secure, Private-Key MIFE for Inner Products 80

4.1.1 Selectively-secure, multi-input scheme from single-input scheme 80
4.1.2 Putting everything together . 91

4.2 Achieving Adaptive Security . 93

5 Multi-Input Inner-Product Functional Encryption without Pairings 101
5.1 From Single to Multi-Input FE for Inner Product 102

5.1.1 Information-Theoretic MIFE with One-Time Security 103
5.1.2 Our Transformation for Inner Product over ZL 104
5.1.3 Our Transformation for Inner Product over Z 106

5.2 Concrete instances of FE for Inner Product . 112
5.2.1 Inner Product FE from MDDH . 112
5.2.2 Inner Product FE from LWE . 113
5.2.3 Inner Product FE from DCR . 114

6 Multi-Client Inner Product Functional Encryption 117
6.1 MCFE with one-AD-IND-weak security . 119
6.2 From one to many ciphertext for MCFE . 124
6.3 Secret Sharing Encapsulation . 129

6.3.1 Definitions . 129
6.3.2 Construction of the Secret Sharing Encapsulation 131

6.4 Strengthening the Security of MCFE Using SSE 133
6.4.1 Generic construction of xx-AD-IND security for MCFE 133

6.5 Decentralizing MCFE . 138
6.5.1 Distributed Sum . 138
6.5.2 Our DSum Protocol . 139
6.5.3 Security Analysis . 139
6.5.4 Application to DMCFE for Inner Products 140

7 Functional Encryption for Quadratic Functions 141
7.1 Private-key FE with one-SEL-IND security . 143
7.2 Public-key FE . 148

8 Conclusion 157
8.1 Summary of the Contributions . 157
8.2 Open Problems . 158

Chapter 1

Introduction

Cryptography helps resolve the tension between the ubiquitous use of mistrusted third-party
servers to store sensitive data, and the desire for privacy. Concentrating data in a few powerful
centers induces economies of scale, and provides an unprecedented availability of computing
power and data storage. However, giving away sensitive data in the clear implies that clients
have to trust their providers. Advanced encryption mechanisms overcome this issue by allowing
users to encrypt their data in a way that still permits servers to perform selective computation
on this encrypted data. The information revealed is exactly what is required by the server to
provide its service to the clients, and nothing else. Moreover, given its unprecedented world-
wide deployment, public-key cryptography needs to fulfill a strong security, which prevents
sophisticated attacks using multiple concurrent sessions, which are inevitable on the Internet.

The work presented in this thesis addresses the following two limitations of traditional
public-key cryptography: 1) it provides stronger security for public-key encryption, that does
not degrade with the number of users, as is necessary for largely deployed systems, 2) it presents
encryption schemes, known as functional encryption schemes, which permit fine-grained access
and selective computation on the encrypted data.

Public-key cryptography. Following the tradition in cryptography, we exemplify public-
key encryption using fictional characters Alice and Bob. Alice wants to send sensitive data to
Bob through an insecure channel. Without sharing any information a priori, Alice and Bob
can use public-key cryptography to prevent Eve, the eavesdropper, to intercept and read the
content of the data. Namely, Bob produces a public key, which can be thought of as the digital
analog of a safe, together with a key that opens the safe. The key is kept secret by Bob,
whereas the safe itself is published for anybody to use (in the digital world, objects can be
copied at will, and used indefinitely many times). Alice puts her message in the safe, closes it
(think of a safe that can be closed without the key; this process is referred to as encrypting the
message), and sends the safe (known as the ciphertext) to Bob, who can open it with his key
(this process is referred to as decrypting the ciphertext). Eve doesn’t see the content inside
the safe, since it’s opaque, thus, the message remains confidential. The only information that
is revealed is an upper bound on the size of the message, since the safe has to be at least as
large as the message it contains. Originally put forth by [DH76, Mer78], public-key encryption
has become ubiquitous, in particular with the Transport Layer Security (TLS) protocol, which
has widespread use on the Internet, such as web browsing or instant messaging.

Methodology: defining security. The security of public-key encryption is defined formally
as a game between an adversary that tries to win, that is, to trigger a particular event, or learn
some particular information (for instance, in an encryption scheme, the adversary wins if it can
recover the encrypted message only knowing the public key), and a challenger that interacts
with the adversary. The game simply specifies which messages are sent by the challenger

1

2 Chapter 1. Introduction

depending on the adversary’s behavior, and the winning condition for the adversary. The
security game is defined in such a way that the adversary’s capabilities encompass all possible
attacks that could reasonably occur in a real-life scenario. The winning condition is defined so
as to capture security breaches.

Defining security is a challenging task that has prompted fundamental research papers,
such as [GM84], which defined the notion of semantic security for public-key encryption, and
the indistinguishability-based notion of security. Security definitions always have to keep up
with the apparition of new practical attacks allowed by new technologies. For instance, the
practical attack of Bleichenbacher [Ble98] on certain standardized and widely used protocols
prompted the adoption of a stronger security definition (known as Chosen-Ciphertext Attacks
security, originally studied in [DDN03, RS92]) as the de facto security notion for encryption.

Provable security. Given a well-defined security game, to prove the security of a particular
scheme, it remains to prove that no efficient adversary can win the security game with good
probability. Influenced by complexity theory, cryptographers use a so-called security param-
eter that measures the input size of a computational problem, and adversaries are defined as
probabilistic Turing machines, whose running time is polynomial in the security parameter.
Since an adversary can run multiple times on different independent random tapes to increase
its winning probability, the natural choice for the bound on the winning probability is any
negligible function in the security parameter, that is, any function that is asymptotically dom-
inated by all functions of the form 1/P for any polynomial P . A more practically oriented
approach estimates the running time of the security reduction and its advantage in breaking
the underlying assumption more precisely than polynomial running time, and negligible win-
ning advantage. The reduction can thus be used to choose concrete security parameters for the
underlying assumption. See for instance [BDJR97b, BR96] which pioneered concrete security.

Standard assumptions. To prove that there exists no polynomial time adversary that can
win a security game with non-negligible probability, we use a reductionist approach. Namely,
we build an efficient algorithm (called the reduction) that leverages the adversary’s success in
winning the security game, to find a solution to a hard problem, that is, a problem that is
impossible to solve efficiently with non-negligible probability, or at least, conjectured to be so.
The tradition in cryptography departs from complexity theory at this point, given that basing
cryptography on NP-hard problems has remained open for many years. Instead, security of
cryptographic schemes relies on a more heuristic approach, where security is proven via a
reduction to a well-defined assumption, which states that some problem is hard in practice,
that is, for which there exists no known efficient solution. Of course, the robustness of the
security depends on how much this assumption is trusted. Provable security makes sense as
long as it relies on assumptions that have been extensively studied. Typically, they involve
decade-old mathematical problems, where finding an efficient algorithm would represent a huge
breakthrough. Instead of using ad hoc cryptanalysis for every possible cryptographic scheme,
one can rely on a small set of simple-to-state assumptions, leveraging years of mathematical
research. Assumptions whose validity is widely trusted are called standard assumptions. For
example, this is the case of the discrete logarithm assumption, which states that given a cyclic
group of prime order p, generated by g, and an element ga for a random exponent a in Zp (we
use multiplicative notation here), it is hard to compute the discrete logarithm a (of course, the
choice of the underlying group is crucial to the validity of the assumption, and only for certain
well-chosen groups is this assumption considered standard).

Tight Security

As explained in the paragraph about provable security, a security reduction can serve as a
tool to choose concrete security parameters. Indeed, an adversary that can win a security

1.1 Tight Security 3

game can be used by a reduction to break a computational problem that is assumed to be
hard. However, the reduction may be slightly less efficient at breaking the hard problem than
the adversary can win the security game. This gap in efficiency is referred to as the security
loss. When choosing the security parameter according to the reduction, it is necessary to take
into account this security loss. For instance, say we want 128 bits of security for a particular
scheme, which means no efficient adversary should be able to break the security of the scheme
with advantage more than 2−128. Suppose the reduction leverages the adversary to break the
discrete logarithm problem with advantage 2−128/L, where L is the security loss. Typically,
the security loss grows with the number of challenge ciphertexts involved in the security game.
That is, the more deployed the scheme, the larger the security loss. This can be an issue
for widespread cryptographic protocols, such as TLS, where sophisticated attacks using many
concurrent sessions can be mounted. For instance, L can be as large as 230 in widely deployed
systems. Then, it is necessary to choose a group where it is assumed to be impossible to
solve the discrete logarithm problem efficiently with an advantage of more than 2−158. In
other words, a large security loss implies large parameters, and a less efficient scheme overall.
Security is said to be tight when the security loss is small and in particular, independent of
the number of clients using the scheme.

State of the Art in Tight Security

The most basic security guarantee required from a public-key encryption scheme is IND-CPA
security, which stands for INDistinguishability against Chosen-Plaintext Attacks, defined in
[GM84], which captures passive, eavesdropping attacks. Many existing IND-CPA-secure en-
cryption schemes have a tight security. For instance, this is the case of El Gamal encryption
scheme [ElG85], whose security tightly reduces to the Decisional Diffie Hellman (DDH) as-
sumption [DH76], a standard assumption that implies the discrete logarithm assumption. This
directly follows from the fact that the DDH assumption is random self-reducible: it is as easy to
break many instances of the DDH assumption than just one instance, for a given prime-order
group. However, the de facto security definition for public-key encryption is a stronger so-called
IND-CCA, which stands for INDistinguishability against Chosen-Ciphertexts Attacks, origi-
nally introduced in [DDN03, RS92], where the adversary can actively manipulate and tamper
with ongoing ciphertexts. Such attacks have been shown to be practically realizable in real life,
such as the attack from [Ble98] on a widely used cryptographic protocol. Unfortunately, most
CCA-secure public-key encryption schemes, such as the seminal construction from [CS98], or
its improvements in [KD04, HK07], do not have a tight security proof: the security loss is
proportional to the number of challenge ciphertexts in the security game. The first CCA-
secure public-key encryption with a tight security proof was given in [HJ12], and a long line of
works [LJYP14, LPJY15, HKS15, AHY15a, GCD+16, Hof17] improved efficiency considerably.
However, the security of all of these schemes rely on a qualitatively stronger assumption than
non-tightly secure schemes [CS98, KD04, HK07], in particular, they require pairing-friendly
elliptic curves (henceforth simply referred to as pairings), an object first used for cryptogra-
phy in [BF01, BF03, Jou00, Jou04]. This situation prompted the following natural question:
does tight security intrinsically require a qualitatively stronger assumption, for CCA-secure
public-key encryption? This question falls into the broad theoretical agenda that aims at min-
imizing the assumptions required to build cryptographic objects as fundamental as public-key
encryption. Besides, eliminating the use of pairings is also important in practice, because it
broadens the class of groups that can be used for the underlying computational assumption.
In particular, it makes it possible to choose groups that admit more efficient group operations
and more compact representations, and also avoid the use of expensive pairing operations.

4 Chapter 1. Introduction

Reference |pk| |ct| security loss assumption

[CS98] 3 3 O(Q) DDH

[KD04, HK07] 2 2 O(Q) DDH

[HJ12] O(1) O(λ) O(1) pairings

[LJYP14, LPJY15] O(λ) 47 O(λ) pairings

[AHY15a] O(λ) 12 O(λ) pairings

[GCD+16] O(λ) 6 O(λ) pairings

[GHKW16] 2λ 3 O(λ) DDH

[Hof17] 28 6 O(λ) pairings

[Hof17] 20 28 O(λ) DCR

[GHK17] 6 3 O(λ) DDH

Figure 1.1: Comparison amongst CCA-secure encryption schemes, where Q is the number of
challenge ciphertexts, |pk| denotes the size (in groups elements) of the public key, and |ct| de-
notes the ciphertext overhead, ignoring smaller contributions from symmetric-key encryption.
DCR stands for Decisional Composite Residuosity, a standard assumption that relies on the
fact that factorizing larger numbers is heuristically hard, originally introduced in [Pai99] (see
Definition 16).

Contribution 1: Tightly CCA-Secure Encryption without Pairing

In [GHKW16], which is presented in Chapter 3 of this thesis, we answer this question nega-
tively. Namely, we present the first CCA-secure public-key encryption scheme based on DDH
where the security loss is independent of the number of challenge ciphertexts and the number
of decryption queries, whereas all prior constructions [LJYP14, LPJY15, HKS15, AHY15a,
GCD+16, Hof17] rely on the use of pairings. Moreover, our construction improves upon the
concrete efficiency of prior schemes, reducing the ciphertext overhead by about half (to only 3
group elements under DDH), in addition to eliminating the use of pairings. Figure 1.1 gives a
comparison between existing CCA-secure public-key encryption schemes.

One limitation of our construction is its large public key: unlike the schemes with looser
security reduction from [CS98, KD04, HK07], which admit a public key that only contains a
constant number of group elements, our public key contains λ group elements, where λ denotes
the security parameter. Using techniques from [Hof17], we present in [GHK17] the first CCA-
secure public-key encryption with a tight security reduction to the DDH assumption (without
pairings), whose public key only contains a constant number of group elements. The efficiency
is comparable with [GHKW16], since the ciphertexts only contain three group elements. We
choose to only present in this thesis the work from the precursor [GHKW16].

Functional Encryption

We now proceed to address another limitation of traditional public-key encryption: it only
provides an all-or-nothing access to the encrypted data. Namely, with the secret key, one can
decrypt the ciphertext and recover the message entirely; without the secret key, nothing is
revealed about the encrypted message (beyond its size). To broaden the scope of applications
of public-key encryption, [O’N10, BSW11] introduced the concept of functional encryption,
which permits selective computations on the encrypted data, that is, it allows some authorized
users to compute partial information on the encrypted data. In a functional encryption scheme,

6 Chapter 1. Introduction

• Using functional encryption, one can perform machine learning on encrypted data. Namely,
after a classifier is learned on plain data, one can generate a functional decryption key
associated with this classifier, which allows decryption to run the classification on en-
crypted data, and reveals only the result of the classification. In [DGP18], a concrete
implementation of functional encryption performs classification of hand-written digits
from the MNIST dataset, with 97.54% accuracy, where the encryption and decryption
only take a few seconds.

Difference with respect to fully homomorphic encryption. In a fully homomorphic
encryption scheme, it is possible to publicly evaluate any function on the encrypted data.
This differs from functional encryption in two major ways: first, the result of evaluating a
function f on an encryption of message m does not reveal the evaluation f(m) in the clear,
but only an encryption of it. Consider the email filtering scenario: using fully homomorphic
encryption, the email server would not be able to decide whether an incoming encrypted
email is spam, without the intervention of the client, who is the only one who can decrypt
the result of the evaluation on encrypted data. Second, using fully homomorphic encryption,
anyone can compute arbitrary functions on the encrypted data: there is no guarantee that the
computation was performed correctly. In a functional encryption scheme, the owner of the
functional decryption key associated with function f can extract f(m), from an encryption of
m, and nothing else. In particular, this gives verifiability for free, unlike fully homomorphic
encryption, which requires additional costly zero-knowledge proofs to verify that the proper
function has been evaluated on the encrypted data.

Security of functional encryption. Security notions for functional encryption were first
given in [O’N10, BSW11]. These works present a simulation-based security definition, where
an efficient simulator is required to generate the view of the adversary in the security game,
only knowing the information that leaks from the encrypted values and corrupted functional
decryption keys. They prove that such a security notion is impossible to achieve in general, and
give another indistinguishability-based variant of the security definition, essentially a security
definition similar to [GM84], generalized to the context of functional encryption. In this
security game, an adversary receives the public key of the encryption scheme, and then, it can
obtain functional decryption keys for functions f of its choice. It also sends two messages,
m0 and m1, to the challenger, in the security game, which samples a random bit b←R {0, 1},
and sends back an encryption of the message mb. Assuming the functional encryption keys
that are obtained by the adversary are associated with functions f that do not distinguish
these two messages, that is, for which f(m0) = f(m1), the adversary should not be able
to guess which bit b was used with a probability significantly more than 1/2, which can be
obtained by random guessing. Intuitively, if the functions f do not help distinguish these two
messages, then no information should be revealed about which message mb was encrypted. An
artificial but useful weakening of the security model is the so-called selective security, where
the game is identical to the description above, except the adversary is required to decide on
which messages m0 and m1 to choose beforehand, that is, before seeing the public key or
obtaining any functional decryption keys. This notion is useful as a stepping stone towards
full-fledged security. Moreover, a guessing argument can convert any selectively-secure scheme
into a fully-secure scheme, albeit with a quantitative gap in the quality of the security.

State of the Art in Functional Encryption

Identity-based encryption. Historically, the first functional encryption scheme beyond
traditional public-key encryption dates back to identity-based encryption, where a constant-
size public key is used to encrypt messages to different users, represented by their identity.
Functional decryption keys are also associated with an identity, and decryption succeeds to

1.2 Functional Encryption 7

recover the encrypted message if the identities associated with the ciphertext and the functional
decryption key match. For instance, identities can be email addresses, and with a single
public key, it is possible to encrypt a message to any user whose email address is known. The
concept was thought of in [Sha84], and the first constructions whose security relied on standard
assumptions were given in [BF01, Coc01].

Attribute-based encryption. Later, a more general concept was introduced: attribute-
based encryption, where ciphertexts are associated with an access policy, and functional de-
cryption keys are associated with a set of attributes. Decryption recovers the encrypted mes-
sage if the attributes associated with the functional decryption key satisfy the access policy
embedded in the ciphertext. Note that the role can be switched, that is, ciphertexts can be as-
sociated with attributes, and functional decryption keys embed access policies, as in [BSW07].
These are referred to as key-policy and ciphertext-policy attributed-based encryption, respec-
tively. Such attribute-based encryption schemes have been first realized from standard as-
sumptions in [SW05, GPSW06] for policies that can be represented as Boolean formulas, or
in [GVW13, GVW15a, BGG+14] for policies that can be represented as any arbitrary circuit
of polynomial size. Note that a ciphertext only hides the underlying message it encrypts,
but reveals the associated access policy (or attributes, depending on whether we consider
ciphertext-policy or key-policy attribute-based encryption).

Predicate encryption. Predicate encryption schemes are even more powerful than attribute-
based encryption schemes, since the access policy associated with a ciphertext remains hidden
(or the attributes, depending on whether we consider the ciphertext-policy or the key-policy
variant). The first constructions from standard assumptions were given in [BW07] for com-
parison and subset queries, in [KSW08, KSW13] for constant-depth Boolean formulas, and in
[GVW15b] for all circuits. Such predicate encryption schemes are sometimes referred to as
private-index predicate encryption, whereas attribute-based encryption (which do not hide the
policy or attributes underlying each ciphertext) are referred to as public-index predicate en-
cryption. It is important to note that the construction from [GVW15b] only hides the attributes
underlying each ciphertext (they build a key-policy predicate encryption, where attributes are
associated with ciphertexts) when the adversary can only obtain functional decryption keys
for access policies which are not satisfied by the attribute of the challenge ciphertext. This
is referred to as weakly-hiding the attributes. Prior works [BW07, KSW08, KSW13] fully
hide the attributes associated with each ciphertext, the only information that leaks being the
value of the predicate evaluation, namely, whether or not the decryption succeeds. In fact,
fully-hiding predicate encryption for all circuits essentially implies functional encryption for
all circuits, for which we have no construction based on standard assumptions. We defer the
interested reader to [GVW15b, 1.3 Discussion] for further details on the connections between
predicate encryption and functional encryption for all circuits.

Functional encryption beyond predicates. So far, we have only discussed special kinds
of functional encryption where decryption successfully recovers the entire message if the at-
tributes associated with the ciphertext (resp. the functional decryption key) satisfy the access
policy embedded in the key (resp. the ciphertext). While this is a fruitful generalization of
traditional public-key encryption, since it permits embedding complex access policy into the
encrypted data, this is still an all-or-nothing encryption: either the message is entirely recov-
ered by the decryption, or no information whatsoever is revealed about the message. Not much
is known about functional encryption with fine-grained access to the encrypted data, that is,
where decryption recovers partial information about the encrypted data. In [ABDP15], the
authors build the first construction of functional encryption from standard assumptions be-
yond predicates. In [ABDP15], messages to be encrypted are vectors of integers, in Zd, for
some dimension d ∈ N that is fixed during the setup of the scheme. Functional decryption keys

8 Chapter 1. Introduction

are associated with vectors y ∈ Zd. Decryption of an encryption of x ∈ Zd with a functional
decryption key associated with y ∈ Zd recovers 〈x, y〉 ∈ Z, which denotes the inner product
between x and y. Otherwise stated, this encryption scheme lets owners of functional decryp-
tion keys compute weighted sum on the encrypted data. Moreover, it is possible to encode
any constant-depth formula as a polynomial of constant degree, which can be evaluated via
functional encryption for inner products. That is, this scheme handles computation of NC0
circuits on encrypted data. Later, [ALS16] gave fully-secure functional encryption schemes
(the original schemes from [ABDP15] being only selectively-secure). In this thesis, we present
extensions of these functional encryption for inner products, and new functional encryption
schemes with succinct ciphertexts that supports the evaluation of degree-2 polynomials on
encrypted data. More details on the contributions of this thesis are given below.

Related works: functional encryption for bounded collusion. The case where security
is guaranteed only when a constant number of functional decryption keys are corrupted has
been considered in prior works. [SS10] built the first functional encryption for all circuits, where
security handles the corruption of one functional decryption key, using garbled circuits and
public-key encryption. In this functional encryption, the ciphertext size depends on the size
of the circuit associated with the functional decryption keys (which thus needs to be bounded
during the setup of the scheme). [GKP+13] improves upon [SS10] since the ciphertext size
depends only on the size of the output of the function for which functional decryption keys
are generated. They use attributed-based encryption for all circuits, and fully homomorphic
encryption, both of which admits construction from standard assumptions. Note that the
security of both of these constructions breaks down as soon as two functional decryption keys
are corrupted. [GVW12, Agr17] show how to generically turn any functional encryption secure
only when one functional decryption key is corrupted, into a functional encryption scheme
where security handles an a priori bounded polynomial number of collusions. We now consider
the case of general functional encryption with unbounded collusions.

Theoretical motivation: the power of general purpose functional encryption. As
mentioned before, the existing functional encryption schemes from standard assumptions only
permit the evaluation of degree-1 (inner products) or degree-2 polynomials on the encrypted
data. However, there are feasibility results for functional encryption schemes where functions
associated to functional decryption keys can be any arbitrary circuits (such schemes are called
general purpose functional encryption schemes). The first candidate construction for general
purpose functional encryption appeared in [GGH+13b, GGH+16]. It relies on Indistinguisha-
bility Obfuscation, a powerful object, originally defined in [BGI+01, BGI+12], that has been
remarkably successful at providing an all-purpose tool for solving cryptographic problems, as
shown in [SW14]. [GGH+13b, GGH+16] gave a construction for Indistinguishability Obfusca-
tion that relies on cryptographic multilinear maps, for which there is currently no construction
from standard assumptions. Other works [BLR+15, GGHZ16] gave direct candidate construc-
tions of functional encryption from multilinear maps.

Follow-ups [Lin16, LV16, Lin17, AS17, LT17] focused on reducing the degree of the required
multilinear map, all the way down to 3 in [LT17] (the degree of the multilinear map required in
prior works depends on the complexity of the circuits for which functional decryption keys are
generated). Namely, in [LT17], general purpose functional encryption is built from succinct
functional encryption which handles evaluation of degree-3 polynomials on encrypted data
(which can be built from degree 3 multilinear maps), together with some assumptions on the
existence of special kind of pseudo-random generators1. Here, succinctness refers to the fact
that the ciphertext size only depends on the underlying message, and not the functions for
which functional decryption keys are generated. Unfortunately, there is no construction of even

1Namely, the existence of pseudo-random generators of block-wise locality 3.

1.2 Functional Encryption 9

degree-3 multilinear from standard assumptions. To sum up, all existing general purpose func-
tional encryption schemes either rely on multilinear maps, or Indistinguishability Obfuscation,
both of which rely on non-standard assumptions. In fact, general purpose functional encryption
has been shown to imply Indistinguishability Obfuscation in [AJ15, BV15, BNPW16].

Contribution 2: Functional Encryption with New Features, and Richer

Functionalities

Motivated by the quest for succinct functional encryption for richer classes of functions, we
follow the bottom-up approach initiated by [ABDP15], which consists of building functional
encryption as expressive as possible from standard assumptions. The benefit of this approach is
two-fold: first, it aims at bridging the gap between the powerful Indistinguishability Obfusction,
and the current constructions from standard assumptions; second, it gives practically relevant
schemes based from concrete assumptions, which are interesting in their own right. We present
extensions of the original functional encryption for inner products from [ABDP15, ALS16] with
additional features: in contribution 2.1, we extend functional encryption for inner products
to the multi-input setting, and to the multi-client setting in contribution 2.2, both of which
generalize the standard single-input setting. Then, we expand functional encryption for richer
classes of functions in contribution 2.3. These contributions are presented in more details
below.

Contribution 2.1: multi-input encryption for inner products.

We present here an extension of the original functional encryption from [ABDP15, ALS16] to
the more general multi-input setting.

Definition of multi-input functional encryption. As explained above, in a functional
encryption (FE) scheme [SW05, BSW11], an authority can generate restricted decryption keys
that allow users to learn specific functions of the encrypted messages and nothing else. That is,
each FE decryption key dkf is associated with a function f and decrypting a ciphertext Enc(x)
with dkf results in f(x). Multi-input functional encryption (MIFE) introduced by [GGG+14]
is a generalization of functional encryption to the setting of multi-input functions. A MIFE,
the scheme has several encryption slots and each decryption key dkf for a multi-input function
f decrypts jointly ciphertexts Enc(x1), . . ., Enc(xn) for all slots to obtain f(x1, . . . , xn) without
revealing anything more about the encrypted messages. The MIFE functionality provides the
capability to encrypt independently messages for different slots. This facilitates scenarios where
information, which will be processed jointly during decryption, becomes available at different
points of time or is provided by different parties. MIFE has many applications related to
computation and data mining over encrypted data coming from multiple sources, which include
examples such as executing search queries over encrypted data, processing encrypted streaming
data, non-interactive differentially private data releases, multi-client delegation of computation,
order-revealing encryption [GGG+14, BLR+15].

Application of multi-input functional encryption for inner products. For instance,
consider a database that contains profiles of the employees in company, where each profile
describes the qualifications that the person has and the position that she can hold. Each such
profile can be represented as an integer vector that contains the scores that person has received
for her qualifications in her last evaluation. The employee profiles are sensitive information
and only direct managers can access the profile information of the people in their teams.
Therefore, the information of profiles needs to be protected from everyone else in the company.
At the same time when the company starts a new project, the manager assigned to lead the
project needs to select people for the new team. According to the needs of the project, the team

10 Chapter 1. Introduction

should have people serving different roles; the qualifications of each team member have different
importance for every project. The selection criterion for the team members can be described
as an integer vector that assigns weights to the different qualifications for the members in all
team positions. In order to evaluate and compare potential teams, the manager needs to obtain
the team score for each of them, which is the weighted sum of the individual qualifications.

A MIFE for inner products provides a perfect solution for the above scenario that protects
the privacy of the profiles while enabling managers to evaluate possible team configurations.
MIFE encryption slots will correspond to different team positions. Each person’s profile will
be a vector of her scores, which will be encrypted for the slot corresponding to the position
she is qualified to hold. When a new project is established, the leading manager is granted a
decryption key that is associated with an integer vector that assigns appropriate weight to each
qualification of different team members. The manager can use this key to evaluate different
combinations of people for the team while learning nothing more about the people’s profiles
than the team score. A similar example is the construction of a complex machine that requires
parts from different manufacturers. Each part is rated based on different quality characteristics
and prices, which are all manufacturer’s proprietary information until a contract has been
signed. The ultimate goal is to assemble a construction of parts that achieve a reasonable
trade-off between quality and price. In order to evaluate different construction configurations,
the company wants to compute cumulative score for each configuration that is a weighted sum
over the quality rates and price of each of the parts.

State of the art for multi-input functional encryption. There are several construc-
tions of MIFE schemes, which can be broadly classified as follows: (i) feasibility results for
general circuits [GGG+14, BGJS15, AJ15, BKS16], and (ii) constructions for specific func-
tionalities, notably comparison, which corresponds to order-revealing encryption [BLR+15].
Unfortunately, all of these constructions rely on indistinguishability obfuscation, single-input
FE for circuits, or multilinear maps [GGH+13b, GGH13a], which we do not know how to
instantiate under standard and well-understood cryptographic assumptions.2

A new construction of MIFE for inner products. In [AGRW17], we present a multi-
input functional encryption scheme (MIFE) for inner products based on standard assumptions
in prime-order bilinear groups. Our construction works for any polynomial number of encryp-
tion slots and achieves adaptive security against unbounded collusion, while relying on standard
polynomial hardness assumptions. Prior to this work, we did not even have a candidate for
3-slot MIFE for inner products in the generic bilinear group model. Our work is also the first
MIFE scheme for a non-trivial functionality based on standard cryptographic assumptions,
as well as the first to achieve polynomial security loss for a super-constant number of slots
under falsifiable assumptions. Prior works required stronger non-standard assumptions such
as indistinguishability obfuscation or multilinear maps. Later, in [ACF+18], we put forward a
novel methodology to convert single-input functional encryption for inner products into multi-
input schemes for the same functionality. Our transformation is surprisingly simple, general
and efficient. In particular, it does not require pairings and it can be instantiated with all
known single-input schemes. This leads to two main advances. First, we enlarge the set of
assumptions this primitive can be based on, notably, obtaining new MIFEs for inner products
from plain DDH, LWE, and Decisional Composite Residuosity. Second, we obtain the first
MIFE schemes from standard assumptions where decryption works efficiently even for mes-
sages of super-polynomial size. In this thesis, we strengthen the security of these constructions
to handle corruption of the input slots. That is, to encrypt, each input slot i ∈ [n] requires an
encryption key eki. We consider the private-key setting, where encryption keys remain secret.

2Here, we refer only to unbounded collusions (i.e. the adversary can request for any number of secret keys).
See the paragraph about related works for results on bounded collusions.

1.2 Functional Encryption 11

This is actually more relevant than the public-key setting, where the encryption keys eki are
revealed to everyone. Indeed, in such a case, anyone can encrypt arbitrary message for any
input slot. That weakens security drastically, since a challenge ciphertext Enc(eki, mb) for mes-
sage mb

i , where b←R {0, 1} is chosen by the security game, can be combined with encryption
of arbitrary messages for the other input slots during decryption. That means that given even
a single functional decryption key for a function f , one can learn f(∗, · · · , ∗, mb

i , ∗, x · · · , ∗),
where each ∗ can be any arbitrary message. This is simply too much information in most rel-
evant use cases. Thus, we consider the setting where encryption keys eki aren’t public, which
avoids precisely this kind of leakage of information. In the schemes presented in Chapter 4
and Chapter 5, the security holds even when some eki are corrupted. That means that even
given eki for some slots i ∈ [n], the security remains for other slots j 6= i. This is an important
security feature, since that means even colluding users cannot learn any information about
the encrypted messages by other users. This is relevant to assume such collusions, since in a
multi-input encryption scheme, users do not communicate with each other, and do not trust
each other. This is a novelty compared to [AGRW17, ACF+18]. A summary of our results and
prior works on functional encryption for inner products is shown in Figure 1.3.

Reference # inputs setting security assumption pairing

[ABDP15] 1 public-key many-SEL-IND DDH no

[ALS16, ABDP16] 1 public-key many-AD-IND DDH no

[BSW11] 1 any many-SEL-SIM impossible

[LL18] 2 private-key many-SEL-IND SXDH + T3DH yes

[KLM+18] 2 private-key
single-key

many-AD-IND3
function-private FE yes

Chapter 4 multi private-key many-AD-IND SXDH yes

Chapter 5 multi private-key many-AD-IND DDH, DCR, LWE no

Figure 1.3: Summary of constructions from cyclic or bilinear groups. We have 8 security
notions xx-yy-zzz where xx ∈ {one, many} refers to the number of challenge ciphertexts; yy
∈ {SEL, AD} refers to the fact that encryption queries are selectively or adaptively chosen;
zzz ∈ {IND, SIM} refers to indistinguishability vs simulation-based security. SXDH stands
for Symmetric eXternal Diffie Hellman assumption, DDH stands for Decisional Diffie Hellman
assumption, DCR stands for Decisional Composite Residuosity assumption, and LWE stands
for Learning With Errors assumption.

Contribution 2.2: multi-client functional encryption for inner products.

We now present another contribution of this thesis, which is an extension of multi-input func-
tional encryption, where the encryption can additionally handle labels, which prevents mixing
and matching different ciphertexts with different labels, thereby giving a stronger security
notion. The labels are typically set to be time stamps, for the application we have in mind.

Definition of multi-client functional encryption. In multi-client functional encryption,
as defined in [GGG+14, GKL+13], the single input x to the encryption procedure is bro-
ken down into an input vector (x1, . . . , xn) where the components are independent. An
index i for each client and a (typically time-based) label ℓ are used for every encryption:
(c1 = Enc(1, x1, ℓ), . . . , cn = Enc(n, xn, ℓ)). Anyone owning a functional decryption key dkf ,
for an n-ary function f and multiple ciphertexts for the same label ℓ, c1 = Enc(1, x1, ℓ), . . . , cn =

12 Chapter 1. Introduction

Enc(n, xn, ℓ), can compute f(x1, . . . , xn) but nothing else about the individual xi’s. The com-
bination of ciphertexts generated for different labels does not give a valid global ciphertext and
the adversary learns nothing from it. This is different from multi-input functional encryption,
where every ciphertext for every slot can be combined with any other ciphertext for any other
slot, and used with functional decryption keys to decrypt an exponential number of values, as
soon as there is more than one ciphertext per slot. This “mix-and-match” feature is crucial for
some of the applications of MIFE, such as building Indistinguishability Obfuscation [GGG+14].
However, it also means the information leaked about the underlying plaintext is too much for
some applications. In the multi-client setting, however, since only ciphertexts with the same
label can be combined for decryption, the information leaked about the encrypted messages is
drastically reduced.

Decentralized multi-client functional encryption. While it allows independent genera-
tion of the ciphertexts, multi-client functional encryption (like multi-input functional encryp-
tion) still assumes the existence of a trusted third party who runs the Setup algorithm and
distributes the functional decryption keys. This third party, if malicious or corrupted, can
easily undermine any client’s privacy. We are thus interested in building a scheme in which
such a third party is entirely taken out of the equation. In [CDG+18a], we introduce the no-
tion of decentralized multi-client functional encryption, in which the authority is removed and
the clients work together to generate appropriate functional decryption keys. We stress that
the authority is not simply distributed to a larger number of parties, but that the resulting
protocol is indeed decentralized: each client has complete control over their individual data
and the functional keys they authorize the generation of.

A new decentralized multi-client functional encryption for inner products. In
[CDG+18a], we give the first decentralized multi-client functional encryption from standard
assumptions, for inner products. Security is proven using bilinear pairing groups, and handles
corruption of input slots. We first give an efficient centralized scheme whose security does
not take into account the information leaked when decrypting incomplete ciphertexts, that is,
ciphertexts for some, but not all, slots i ∈ [n]. Moreover, this scheme is only secure when
there is only one challenge ciphertext per pair (i, ℓ), where i ∈ [n] is an input slot, and ℓ is
a label. The construction we give in Chapter 6 is a generalization of [CDG+18a] to encrypt
vectors (instead of scalars in [CDG+18a]). Then, we deal with the limitation in the security
model that requires for complete ciphertexts only. Our solution is quite generic, as this is an
additional layer that is applied to the ciphertexts so that, unless the ciphertext is complete
(with all the encrypted components), no information leaks about the individual ciphertexts,
and thus on each component. This technique relies on a linear secret sharing scheme, hence
the name Secret Sharing Encapsulation (SSE). It can also be seen as a decentralized version
of All-Or-Nothing Transforms [Riv97, Boy99, CDH+00]. We propose a concrete instantiation
in pairing-friendly groups, under the Decisional Bilinear Diffie-Hellman problem, in the ran-
dom oracle model. This transformation works on any MCFE, and not only MCFE for inner
products. Secondly, we show how another independent layer of single-input functional encryp-
tion for inner products authorizes repetitions: more precisely, we remove the restriction of a
unique input per client and per label. Finally, we propose an efficient decentralized algorithm
to generate a sum of private inputs, which can convert an MCFE for inner products into a
decentralized MCFE for inner products: this technique is inspired from [KDK11], and only
applies to the functional decryption key generation algorithm, and so this is compatible with
the two above conversions. The resulting scheme is completely decentralized, in the sense that
users do not need a trusted third party, even for setting up parameters (they just need to agree
on a specific pairing group and a hash function that will be used later). These techniques
used to strengthen the security of MCFE, as well as decentralize the key generation and setup,
appeared in [CDG+18b].

1.2 Functional Encryption 13

A use case. Consider a financial firm that wants to compute aggregates of several companies’
private data (profits, number of sales) so that it can better understand the dynamics of a sector.
The companies may be willing to help the financial firm understand the sector as whole, or may
be offered compensation for their help, but they don’t trust the financial firm or each other
with their individual data. After setting up a DMCFE, each company encrypts its private
data with a time-stamp label under its private key. Together, they can give the financial firm
a decryption aggregation key that only reveals a sum on the companies’ private data weighted
by public information (employee count, market value) for a given time-stamp. New keys can
retroactively decrypt aggregates on old data.

Private stream aggregation (PSA). This notion, also referred to as Privacy-Preserving
Aggregation of Time-Series Data, is an older primitive introduced by Shi et al. [SCR+11]. Even
though it is quite similar to our target DMCFE scheme, PSA does not consider the possibility
of adaptively generating different keys for different inner-product evaluations, but only enables
the aggregator to compute the sum of the clients’ data for each time period. PSA also typically
involves a Differential Privacy component, which has yet to be studied in the larger setting of
DMCFE. Further research on PSA has focused on achieving new properties or better efficiency
[CSS12, Emu17, JL13, LC13, LC12, BJL16] but not on enabling new functionalities.

Contribution 2.3: Functional encryption for quadratic functions.

In [BCFG17], we build the first functional encryption scheme based on standard assump-
tions that supports a functionality beyond inner products, or predicates. Our scheme al-
lows to compute bilinear maps over the integers: messages are expressed as pairs of vectors
(x, y) ∈ Zn × Zm, secret keys are associated with n ·m coefficients αi,j , and decryption allows
to compute

∑
i,j αi,jxiyj . Bilinear maps represent a very general class of quadratic functions

that includes, for instance, multivariate quadratic polynomials. These functions have several
practical applications. For instance, a quadratic polynomial can express many statistical func-
tions (e.g. (weighted) mean, variance, covariance, root-mean-square), the Euclidean distance
between two vectors, and the application of a linear or quadratic classifier (e.g., linear or
quadratic regression).

In [DGP18], we implement a functional encryption scheme for bilinear maps to perform
machine learning on encrypted data. Namely, a quadratic classifier is learned on plain data,
then, a functional decryption key is generated for a function that corresponds to the quadratic
classifier. Using functional encryption, users can encrypt data, and the owner of the functional
decryption key can perform classification of the encrypted data, without ever decrypting the
data. In particular, no information apart from the result of the classification4 is revealed about
the encrypted data. In [DGP18], the quadratic classifier has an accuracy of 97.54% on MNIST
data set of hand-written digits, where encryption and decryption only take a few seconds.
In [BCFG17], we present a fully-secure construction whose security is proven in an idealized
model, called the Generic Group Model (GGM), where the adversary cannot use the structure
of the underlying pairing group. This is justified in practice, since for well-chosen elliptic
curves, the only known attacks are generic, they do not use the structure of the underlying
group. The security of the construction from [DGP18] also relies on the generic group model.
In Chapter 7, we present the construction from [BCFG17] that is proven selectively-secure
under standard assumptions, as opposed to relying on the generic group model. Note that
[AS17, Lin17] concurrently exhibited functional encryption schemes supporting the evaluation
of degree-2 polynomials, but on the arguably simpler private-key setting, where encryption

4in fact, to be technically accurate, the functional decryption keys in [DGP18] leak slightly more information
than just the result of the classification: they leak the probability that a given instance belongs to each possible
class.

14 Chapter 1. Introduction

References security public or private key

[AS17] sel. GGM private-key

[Lin17] sel. standard private-key

[BCFG17, DGP18] ad. GGM public-key

[BCFG17] sel. standard public-key

Figure 1.4: Existing functional encryption for quadratic functions. Here, ad. and sel. denote
adaptive and selective security respectively and GGM stands for Generic Group Model.

requires a secret key. A comparison of existing functional encryption schemes for quadratic
functions is given in Figure 7.1.

Other contributions

In this manuscript, we focus on presenting tightly-secure encryption, and functional encryption
schemes. During this thesis, we have been also working on other topics, which led to papers
accepted in peer-reviewed conferences. We give a brief description of these contributions here.
A list of personal publications appears at the end of this manuscript.

• In [GMW15], we construct a lattice-based predicate encryption scheme for multi-dimensional
range and multi-dimensional subset queries. Our scheme is selectively-secure and weakly
attribute-hiding, and its security is based on the standard Learning With Errors (LWE)
assumption. Multi-dimensional range and subset queries capture many interesting appli-
cations pertaining to searching on encrypted data. To the best of our knowledge, these
were the first lattice-based predicate encryption schemes for functionalities beyond IBE
and inner products.

• In [CGW15], we present a modular framework for the design of efficient adaptively se-
cure attribute-based encryption (ABE) schemes for a large class of predicates under the
standard k-Lin assumption in prime-order groups; this is the first uniform treatment of
dual system ABE across different predicates and across both composite and prime-order
groups. Via this framework, we obtain concrete efficiency improvements for several ABE
schemes. Our framework has three novel components over prior works: (i) new techniques
for simulating composite-order groups in prime-order ones (ii) a refinement of prior en-
codings framework for dual system ABE in composite-order groups (iii) an extension to
weakly attribute-hiding predicate encryption (which includes anonymous identity-based
encryption as a special case).

• In [GKW15], we initiate a systematic treatment of the communication complexity of
conditional disclosure of secrets (CDS), where two parties want to disclose a secret to a
third party if and only if their respective inputs satisfy some predicate. We present a
general upper bound and the first non-trivial lower bounds for conditional disclosure of
secrets. Moreover, we achieve tight lower bounds for many interesting setting of parame-
ters for CDS with linear reconstruction, the latter being a requirement in the application
to attribute-based encryption. In particular, our lower bounds explain the trade-off
between ciphertext and secret key sizes of several existing attribute-based encryption
schemes based on the dual system methodology.

• In [FGKO17], we build new Access Control Encryption (ACE), which is a novel paradigm
for encryption which allows to control not only what users in the system are allowed
to read but also what they are allowed to write. The original work of Damgård et
al. [DHO16] introducing this notion left several open questions, in particular whether it

1.2 Functional Encryption 15

is possible to construct ACE schemes with polylogarithmic complexity (in the number of
possible identities in the system) from standard cryptographic assumptions. In this work
we answer the question in the affirmative by giving (efficient) constructions of ACE for an
interesting class of predicates which includes equality, comparison, interval membership,
and more. We instantiate our constructions based both on standard pairing assumptions
(SXDH) or more efficiently in the generic group model.

• In [AGRW17], we present a multi-input functional encryption scheme (MIFE) for inner
products based on the k-Lin assumption in prime-order bilinear groups. Our construc-
tion works for any polynomial number of encryption slots and achieves adaptive security
against unbounded collusion, while relying on standard polynomial hardness assump-
tions. Prior to this work, we did not even have a candidate for 3-slot MIFE for inner
products in the generic bilinear group model. Our work is also the first MIFE scheme
for a non-trivial functionality based on standard cryptographic assumptions, as well as
the first to achieve polynomial security loss for a super-constant number of slots under
falsifiable assumptions. Prior works required stronger non-standard assumptions such as
indistinguishability obfuscation or multilinear maps.

• In [BCFG17], we present two practically efficient functional encryption schemes for a large
class of quadratic functionalities. Specifically, our constructions enable the computation
of so-called bilinear maps on encrypted vectors. This represents a practically relevant
class of functions that includes, for instance, multivariate quadratic polynomials (over
the integers). Our realizations work over asymmetric bilinear groups and are surprisingly
efficient and easy to implement. For instance, in our most efficient scheme the public key
and each ciphertext consists of 2n+1 and 4n+2 group elements respectively, where n is the
dimension of the encrypted vectors, while secret keys are only two group elements. Our
two schemes build on similar ideas, but develop them in a different way in order to achieve
distinct goals. Our first scheme is proved (selectively) secure under standard assumptions,
while our second construction is concretely more efficient and is proved (adaptively)
secure in the generic group model. As a byproduct of our functional encryption schemes,
we show new predicate encryption schemes for degree-two polynomial evaluations, where
ciphertexts consist of only O(n) group elements. This significantly improves the O(n2)
bound one would get from predicate encryption for inner products.

• In [ABGW17], we propose, implement, and evaluate fully automated methods for proving
security of ABE in the Generic Bilinear Group Model ([BBG05, Boy08]), an idealized
model which admits simpler and more efficient constructions, and can also be used to
find attacks. Our method is applicable to Rational-Fraction Induced ABE, a large class
of ABE that contains most of the schemes from the literature, and relies on a Master
Theorem, which reduces security in the GGM to a (new) notion of symbolic security,
which is amenable to automated verification using constraint- based techniques. We
relate our notion of symbolic security for Rational-Fraction Induced ABE to prior notions
for Pair Encodings. Finally, we present several applications, including automated proofs
for new schemes.

• In [FG18], we focus on structure-preserving signatures on equivalence classes, or equivalence-
class signatures for short (EQS), are signature schemes defined over bilinear groups whose
messages are vectors of group elements. Signatures are perfectly randomizable and given
a signature on a vector, anyone can derive a signature on any multiple of the vector;
EQS thus sign projective equivalence classes. Applications of EQS include the first
constant-size anonymous attribute-based credentials, efficient round-optimal blind sig-
natures without random oracles and efficient access-control encryption. To date, the
only existing instantiation of EQS is proven secure in the generic-group model. In this
work we show that by relaxing the definition of unforgeability, which makes it efficiently

16 Chapter 1. Introduction

verifiable, we can construct EQS from standard assumptions, namely the Matrix-Diffie-
Hellman assumptions. We then show that our unforgeability notion is sufficient for most
applications.

• In [GHKP18], We provide a structure-preserving signature (SPS) scheme with an (al-
most) tight security reduction to a standard assumption. Compared to the state-of-the-
art tightly secure SPS scheme of Abe et al. [AHN+17], our scheme has smaller signatures
and public keys (of about 56%, resp. 40% of the size of signatures and public keys in Abe
et al.’s scheme), and a lower security loss (of O(log Q) instead of O(λ), where λ is the se-
curity parameter, and Q = poly(λ) is the number of adversarial signature queries). While
our scheme is still less compact than structure-preserving signature schemes without tight
security reduction, it significantly lowers the price to pay for a tight security reduction.
In fact, when accounting for a non-tight security reduction with larger key (i.e., group)
sizes, the computational efficiency of our scheme becomes at least comparable to that of
non-tightly secure SPS schemes. Technically, we combine and refine recent existing works
on tightly secure encryption and SPS schemes. Our technical novelties include a modular
treatment (that develops an SPS scheme out of a basic message authentication code),
and a refined hybrid argument that enables a lower security loss of O(log Q) (instead of
O(λ)).

• In [ACF+18], we present new constructions of multi-input functional encryption (MIFE)
schemes for the inner-product functionality that improve the state of the art solution
of Abdalla et al. [AGRW17] in two main directions. First, we put forward a novel
methodology to convert single-input functional encryption for inner products into multi-
input schemes for the same functionality. Our transformation is surprisingly simple,
general, and efficient. In particular, it does not require pairings and it can be instantiated
with all known single-input schemes. This leads to two main advances. First, we enlarge
the set of assumptions this primitive can be based on, notably obtaining new MIFEs for
inner products from plain DDH, LWE and Composite Residuosity. Second, we obtain
the first MIFE schemes from standard assumptions where decryption works efficiently
even for messages of super-polynomial size. Our second main contribution is the first
function-hiding MIFE scheme for inner products based on standard assumptions. To
this end, we show how to extend the original, pairing-based, MIFE by Abdalla et al.
[AGRW17] in order to make it function hiding, thus obtaining a function-hiding MIFE
from the MDDH assumption.

• In [GKW18], we present a new public-key broadcast encryption scheme where both the
ciphertext and secret keys consist of a constant number of group elements. Our result
improves upon the work of Boneh, Gentry, and Waters [BGW05] in two ways: (i) we
achieve adaptive security instead of selective security, and (ii) our construction relies on
the decisional k-Linear Assumption in prime-order groups (as opposed to q-type assump-
tions or subgroup decisional assumptions in composite-order groups); our improvements
come at the cost of a larger public key. Finally, we show that our scheme achieves adap-
tive security in the multi-ciphertext setting with a security loss that is independent of
the number of challenge ciphertexts.

• In [CDG+18a], we consider a situation where multiple parties, owning data that have to
be frequently updated, agree to share weighted sums of these data with some aggrega-
tor, but where they do not wish to reveal their individual data, and do not trust each
other. We combine techniques from Private Stream Aggregation (PSA) and Functional
Encryption (FE), to introduce a primitive we call Decentralized Multi-Client Functional
Encryption (DMCFE), for which we give a practical instantiation for inner products. This
primitive allows various senders to non-interactively generate ciphertexts which support
inner-product evaluation, with functional decryption keys that can also be generated

1.2 Functional Encryption 17

non-interactively, in a distributed way, among the senders. Interactions are required
during the setup phase only. We prove adaptive security of our constructions, while
allowing corruptions of the clients, in the random oracle model.

Road-map. The rest of this thesis is organized as follows. In Chapter 2, we give the relevant
background on public-key encryption and functional encryption, including security definitions
and concrete assumptions that will be used throughout this thesis. In Chapter 3, we give our
tightly CCA-secure encryption without pairings. Then, in Chapter 4, we present our multi-
input functional encryption for inner products from pairings. In Chapter 5, we present our
multi-input functional encryption for inner products without pairings. In Chapter 6, we exhibit
our multi-client functional encryption for inner products. Finally, in Chapter 7, we present
our functional encryption for quadratic functions, before concluding in Chapter 8.

18 Chapter 1. Introduction

Chapter 2

Preliminaries

Notations and Basics

For any set S, we denote by x←R S an element x that is picked uniformly at random over S.
Adversaries or algorithms refer to Turing machines. PPT stands for Probabilistic Polynomial
Time. For any PPT algorithm A, we denote by x ← A an output of A which is sampled at
random in the output space of A, over the random coins of A. For any Turing machine A, we
denote by T(A) its running time. Let p be a prime, and n, m ∈ N. For any matrix A ∈ Zn×m

p ,
we denote by Span(A) the (column) span of A. For any dimension d ∈ N, we denote by GLd(p)
the set of invertible matrices in Zd×d

p . We denote by IDd×d the identity matrix in Zd×d
p . For

any vector x ∈ Rd, we denote by ‖x‖2 the Euclidian norm of x, that is
√∑d

i=1 x2
i . Throughout

this paper, we denote by λ the security parameter, and we use the notation 1λ to indicate
that the security parameter is written in unary basis. For any function in parameter λ, we
denote by f(λ) = poly(λ) the fact that f is a polynomial. We denote by f(λ) = negl(λ),
if for all polynomials P , f is asymptotically dominated by 1/P , that is, for λ large enough,
f(λ) < 1/P (λ).

Collision resistant hashing

A hash function generator is a PPT algorithm H that, on input 1λ , outputs an efficiently
computable function H : {0, 1}∗ → {0, 1}λ.

Definition 1: Collision Resistance

We say that a hash function generator H outputs collision-resistant hash functions H if
for all PPT adversaries A,

AdvCR
H,A(λ) := Pr[x 6= x′ ∧ H(x) = H(x′)|H←R H(1λ), (x, x′)← A(1λ, H)] = negl(λ).

19

20 Chapter 2. Preliminaries

Symmetric-Key Encryption

Definition 2: Symmetric-Key Encryption

A symmetric key encryption (SEnc, SDec) with key space K is defined as:

• SEnc(K, m): given a key K and a message m, outputs a ciphertext ct.

• SDec(K, ct): given a key K and a ciphertext ct, outputs a plaintext.

The following must hold.

Correctness. For all messages m in the message space, Pr[SDec(K, SEnc(K, m)) =
m] = 1, where the probability is taken over K ←R K.

One-time Security. For any PPT adversary A, the following advantage is negligible:

AdvOT
SKE,A(λ) :=

∣∣∣∣∣∣∣
Pr


b′ = b :

(m0, m1)← A(1λ)
K ←R K, b←R {0, 1}, ct = SEnc(K, mb)
b′ ← A(ct)


− 1

2

∣∣∣∣∣∣∣
.

Authenticated Encryption

Definition 3: Authenticated Encryption

An authenticated symmetric encryption (AE) with message-space M and key-space K
consists of two polynomial-time deterministic algorithms (EncAE, DecAE):

• The encryption algorithm EncAE(K, M) generates C, encryption of the message M
with the secret key K.

• The decryption algorithm DecAE(K, C), returns a message M or ⊥.

The following must hold.

Perfect correctness. For all λ, for all K ∈ K and m ∈M, we have

DecAE(K, EncAE(K, M)) = m.

One-time Privacy and Authenticity. For any PPT adversary A, we have:

Advae-ot
AE,A(λ) :=

∣∣∣∣∣Pr

[
b′ = b :

K ←R K; b←R {0, 1}
b′ ←R AEncO(·,·),DecO(·)(1λ,M,K)

]
− 1/2

∣∣∣∣∣ = negl(λ),

where EncO(m0, m1), on input two messages m0 and m1, returns EncAE(K, mb), and
DecO(φ) returns DecAE(K, φ) if b = 0, ⊥ otherwise. A is allowed at most one call to each
oracle EncO and DecO, and the query to DecO must be different from the output of EncO.
A is also given the description of the key-space K as input.

Public-Key Encryption

2.1 Notations and Basics 21

Definition 4: Public-Key Encryption

A Public-Key Encryption (PKE) consists of the following PPT algorithms (ParamPKE,
GenPKE, EncPKE, DecPKE):

• GenPKE(1λ): on input the security parameter, generates a pair of public and secret
keys (pk, sk).

• EncPKE(pk, M): on input the public key and a message, returns a ciphertext ct.

• DecPKE(pk, sk, ct): deterministic algorithm that returns a message M or ⊥, where
⊥ is a special rejection symbol.

The following must hold.

Perfect correctness. For all λ, we have

Pr

[
DecPKE(pk, sk, ct) = M

∣∣∣∣∣
(pk, sk)←R GenPKE(1λ);
ct←R EncPKE(pk, M)

]
= 1.

Definition 5: Multi-ciphertext CCA security [BBM00]

A public-key encryption PKE is IND-CCA secure if for any PPT adversary A, we have:

AdvIND-CCA
PKE,A (λ) :=

∣∣∣∣∣∣∣
Pr


 b = b′

∣∣∣∣∣∣∣

CEnc := ∅, b←R {0, 1}
(pk, sk)←R GenPKE(1λ)
b′ ← ADecO(·),EncO(·,·)(1λ, pk)


− 1/2

∣∣∣∣∣∣∣
= negl(λ)

where:

• On input the pair of messages (m0, m1), EncO(m0, m1) returns EncPKE(pk, mb) and
sets CEnc := CEnc ∪ {ct}.

• DecO(ct) returns DecPKE(pk, sk, ct) if ct /∈ CEnc, ⊥ otherwise.

Key-Encapsulation Mechanism

Definition 6: Tag-based KEM

A tag-based Key-Encapsulation Mechanism (KEM) for tag space T and key space K
consists of three PPT algorithms (GenKEM, EncKEM, DecKEM):

• GenKEM(1λ): on input the security parameter, generates a pair of public and secret
keys (pk, sk).

• EncKEM(pk, τ): on input the public key and a tag τ , returns a pair (K, C) where K
is a uniformly distributed symmetric key in K and C is a ciphertext, with respect
to the tag τ ∈ T .

• DecKEM(pk, sk, τ, C): deterministic algorithm that returns a key K ∈ K, or a special
rejection symbol ⊥ if it fails.

The following must hold.

22 Chapter 2. Preliminaries

Perfect correctness. For all λ, for all tags τ ∈ T , we have

Pr

[
DecKEM(pk, sk, τ, C) = K

∣∣∣∣∣
(pk, sk)←R GenKEM(1λ);
(K, C)←R EncKEM(pk, τ)

]
= 1.

Definition 7: Multi-ciphertext PCA security [OP01].

A key encapsulation mechanism KEM is IND-PCE secure if for any adversary A, we
have:

AdvIND-PCA
KEM,A (λ) :=

∣∣∣∣∣∣∣
Pr


 b = b′

∣∣∣∣∣∣∣

TEnc = TDec := ∅, b←R {0, 1}
(pk, sk)←R GenKEM(1λ)
b′ ← ADecO(·,·,·),EncO(·)(1λ, pk)


− 1/2

∣∣∣∣∣∣∣
= negl(λ)

where:

• The decryption oracle DecO(τ, C, K̂) computes K := DecKEM(pk, sk, τ, C). It re-
turns 1 if K̂ = K ∧ τ /∈ TEnc, 0 otherwise. Then it sets TDec := TDec ∪ {τ}.

• The oracle EncO(τ) computes (K, C)←R EncKEM(pk, τ), sets K0 := K and K1 ←R

K. If τ /∈ TDec ∪ TEnc, it returns (C, Kb), and sets TEnc := TEnc ∪ {τ}; otherwise it
returns ⊥.

Cryptographic Assumptions

Prime-Order Groups

Let GGen be a PPT algorithm that on input 1λ returns a description G = (G, q, P) of an
additive cyclic group G of order p for a 2λ-bit prime p, whose generator is P .

We use implicit representation of group elements as introduced in [EHK+13]. For a ∈ Zp,
define [a] = aP ∈ G as the implicit representation of a in G. More generally, for a matrix
A = (aij) ∈ Zn×m

p we define [A] as the implicit representation of A in G:

[A] :=




a11P ... a1mP

an1P ... anmP


 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be an element
in G. Note that from [a] ∈ G it is generally hard to compute the value a (discrete logarithm
problem in G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute
[ax] ∈ G and [a + b] ∈ G.

Definition 8: Computational Diffie-Hellman Assumption

The Computational Diffie-Hellman (CDH) assumption [DH76] states that, in a prime-
order group G ←R GGen(1λ), no PPT adversary can compute [xy], from [x] and [y] for
x, y ←R Zp, with non-negligible success probability.

Equivalently, this assumption states it is hard to compute [a2] from [a] for a ←R Zp. This
comes from the fact that 4 · [xy] = [(x + y)2]− [(x− y)2].

2.2 Cryptographic Assumptions 23

Pairing Groups

The use of pairing friendly elliptic curves for cryptography has been initiated by [BF01,
BF03, Jou00, Jou04]. We refer to [GPS08] for further details on the use of pairing for cryp-
tography. Let PGGen be a PPT algorithm that on input 1λ returns a description PG =
(G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups where G1, G2, GT are cyclic group
of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively, and
e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map. Define
PT := e(P1, P2), which is a generator of GT . We again use implicit representation of group
elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit representation
of a in Gs . More generally, for a matrix A = (aij) ∈ Zn×m

p we define [A]s as the implicit
representation of A in Gs:

[A]s :=




a11P ... a1mP

an1P ... anmP


 ∈ Gn×m

s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an element
in Gs. Note that from [b]T ∈ GT , it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2

(pairing inversion problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently
compute [ax]s ∈ Gs. Further, Given [a]1, [a]2, one can efficiently compute [ab]T using the
pairing e. For two matrices A, B with matching dimensions define e([A]1, [B]2) := [AB]T in
GT .

Matrix Diffie-Hellman

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) assumption from
[EHK+13].

Definition 9: Matrix Distribution

Let k, ℓ ∈ N, with ℓ > k, and a prime p. We call Dℓ,k(p) a matrix distribution if it outputs
in polynomial time matrices in Zℓ×k

p of full rank k and satisfying the following property:

Pr[orth(A) ⊆ Span(B)] =
1

Ω(p)
,

where A, B←R Dℓ,k(p). We write Dk(p) := Dk+1,k(p).

Without loss of generality, we assume the first k rows of A ←R Dℓ,k(p) form an invertible
matrix. The Dℓ,k(p)-Matrix Diffie-Hellman problem in a group Gs of order p, is to distinguish
the two distributions ([A]s, [Aw]s) and ([A]s, [u]s) where A ←R Dℓ,k(p), w ←R Zk

p and u ←R

Zℓ
p.

Definition 10: Dℓ,k(p)-Matrix Diffie-Hellman assumption, Dℓ,k(p)-MDDH

Let Dℓ,k(p) be a matrix distribution. We say that the Dℓ,k(p)-Matrix Diffie-Hellman
(Dℓ,k(p)-MDDH) assumption holds in a group Gs, if for all PPT adversaries A:

Adv
Dℓ,k(p)-mddh

Gs,A (λ) := |Pr[A(Gs, [A]s, [Aw]s) = 1]− Pr[A(Gs, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over A←R Dℓ,k(p), w←R Zk
p, u←R Zℓ

p.

24 Chapter 2. Preliminaries

Let Q ≥ 1. For W ←R Zk×Q
p , U ←R Zℓ×Q

p , we consider the Q-fold Dℓ,k(p)-MDDH as-
sumption in the group G, which consists in distinguishing the distributions ([A]s, [AW]s) from
([A]s, [U]s). That is, a challenge for the Q-fold Dℓ,k(p)-MDDH assumption consists of Q inde-
pendent challenges of the Dℓ,k(p)-MDDH assumption (with the same A but different random-
ness w). As shown in [EHK+13] (and recalled in Lemma 1), the Dℓ,k(p)-MDDH assumption
is random self reducible, that is, it implies its Q-fold variant.

Definition 11: Q-fold Dℓ,k(p)-MDDH assumption

Let Q ≥ 1, and Dℓ,k(p) be a matrix distribution. We say that the Q-fold Dℓ,k(p)-MDDH
assumption holds in a group Gs, if for all PPT adversaries A:

Adv
Q-Dℓ,k(p)-mddh

Gs,A (λ) := |Pr[A(Gs, [A]s, [AW]s) = 1]−Pr[A(Gs, [A]s, [U]s) = 1]| = negl(λ),

where the probability is taken over A←R Dℓ,k(p), W←R Zk×Q
p , U←R Zℓ×Q

p .

Lemma 1: Dℓ,k(p)-MDDH ⇒ Q-fold Dℓ,k(p)-MDDH [EHK+13]

Let Q, ℓ, k ∈ N∗ such that ℓ > k, and a group Gs of prime order p. For any PPT adversary
A, there exists a PPT adversary B such that:

Adv
Q-Dℓ,k(p)-mddh

Gs,A (λ) ≤




Q · Adv
Dℓ,k(p)-mddh

Gs,B (λ) if 1 ≤ Q ≤ ℓ− k

(ℓ− k) · Adv
Dℓ,k(p)-mddh

Gs,B (λ) + 1
p−1 if Q > ℓ− k

where the probability is taken over A←R Uℓ,k(p), W←R Zk×Q
p , U←R Zℓ×Q

p .

For each k ≥ 1, [EHK+13] specifies distributions Lk, SCk, Ck (and others) over Z
(k+1)×k
p

such that the corresponding Dk(p)-MDDH assumptions are generically secure in prime-order
groups and form a hierarchy of increasingly weaker assumptions. Lk-MDDH is the well known
k-Linear assumption, denote as k-Lin for short, with 1-Lin = DDH, the decisional Diffie-
Hellman assumption. In this work we are particularly interested in the uniform matrix distri-
bution Uℓ,k(p).

Definition 12: Uniform distribution

Let ℓ, k ∈ N, with ℓ > k, and p be a prime. We denote by Uℓ,k(p) the uniform distribution
over all full-rank ℓ× k matrices over Zp. Let Uk(p) := Uk+1,k(p).

In [GHKW16], it shown that for any ℓ, k ∈ N∗ such that ℓ > k, the Uℓ,k(p)-MDDH assump-
tion is equivalent to the Uk(p)-MDDH assumption.

Lemma 2: Uℓ,k(p)-MDDH ⇔ Uk(p)-MDDH [GHKW16]

Let ℓ, k ∈ N∗, with ℓ > k, s ∈ {1, 2, T}, and a group Gs of prime-order p. For any PPT
adversary A, there exists a PPT adversary B (and vice versa) such that:

Adv
Uℓ,k(p)-mddh

Gs,A (λ) = Adv
Uk(p)-mddh

Gs,B (λ).

Together with Lemma 1, this implies the following corollary.

2.2 Cryptographic Assumptions 25

Corollary 1: Uk(p)-MDDH ⇒ Q-fold Uℓ,k(p)-MDDH

Let Q, ℓ, k ∈ N∗, with ℓ > k, and a group Gs of prime order p. For any PPT adversary
A, there exists a PPT adversary B such that:

Adv
Q-Uℓ,k(p)-mddh

Gs,A (λ) ≤ Adv
Uk(p)-mddh

Gs,B (λ) +
1

p− 1
.

Among all possible matrix distributions Dℓ,k(p), the uniform matrix distribution Uk(p) is
the hardest possible instance as stated in Lemma 3, so in particular k-Lin⇒ Uk-MDDH.

Lemma 3: Dℓ,k(p)-MDDH ⇒ Uℓ,k(p)-MDDH, [EHK+13]

Let Dℓ,k(p) be a matrix distribution, and Gs be a group of prime order p. For any PPT
adversary A, there exists a PPT adversary B such that:

Adv
Uℓ,k-mddh

Gs,A (λ) ≤ Adv
Dℓ,k(p)-mddh

Gs,B (λ).

We now present a standard assumption in asymmetric pairing groups, known as the Deci-
sional Bilinear Diffie Hellman (DBDH) assumption.

Definition 13: DBDH assumption

We say that the DBDH assumption holds in a pairing group PG := (G1,G2, p, P1, P2, e),
if for all PPT adversaries A:

AdvDBDH
PG,A (λ) := |Pr[A(PG, [a]1, [b]1, [b]2, [c]2, [abc]T) = 1]

− Pr[A(PG, [a]1, [b]1, [b]2, [c]2, [s]T) = 1]|
= negl(λ),

where the probability is taken over a, b, c, s←R Zp.

As for the Dk(p)-MDDH assumption, we define a Q-fold variant of the DBDh assumption,
and prove its random self-reducibility.

Definition 14: Q-fold DBDH assumption

For any Q ≥ 1, we say that the Q-fold DBDH assumption holds in a pairing group
PG := (G1,G2, p, P1, P2, e), if for all PPT adversaries A:

Adv
Q-DBDH
PG,A (λ) := |Pr

[
A
(
PG, [a]1, [b]1, [b]2, {[ci]2, [abci]T }i∈[Q]

)
= 1

]

− Pr
[
A
(
PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[Q]

)
= 1

]
|

= negl(λ),

where the probability is taken over a, b←R Zp, and for all i ∈ [Q], ci, si ←R Zp.

Lemma 4: DBDH ⇒ Q-fold DBDH

Let Q ≥ 1, and a pairing group PG := (G1,G2, p, P1, P2, e). For any PPT adversary A,

26 Chapter 2. Preliminaries

there exists a PPT adversary B such that:

Adv
Q-DBDH
PG,A (λ) ≤ AdvDBDH

PG,B (λ).

Proof of Lemma 4. Upon receiving a DBDH challenge (PG, [a]1, [b]1, [b]2, [c]2, [s]T), B samples
αi ←R Z∗p, c′i ←R Zp computes [ci]2 := [αi · c]2 + [c′i]2, [si]T := [αi · s]T + [c′i · ab]T for all i ∈ [Q],
and gives the challenge (PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[Q]) to A.

We now recall the definition another standard assumption in asymmetric pairing groups,
first introduced in [BSW06].

Definition 15: 3-PDDH assumption

We say that the 3-party Decision Diffie-Hellman (3-PDDH) assumption holds in a pairing
group PG ← PGGen(1λ) if for all PPT adversaries A:

Adv3-PDDH
PG,A (λ) := |Pr[A(PG, [a]1, [b]2, [c]1, [c]2, [abc]1) = 1]

− Pr[A(PG, [a]1, [b]2, [c]1, [c]2, [d]1) = 1]|
= negl(λ)

where the probability is taken over a, b, c, d←R Zp.

Decisional Composite Residuosity

In [Pai99], the Decisional Composite Residuosity assumption is used to build a linearly homo-
morphic encryption scheme where the message is ZN , for an RSA modulus N .

Definition 16: Decisional Composite Residuosity assumption

Let N = pq, for prime numbers p, q. We say the Decisional Composite Residuosity (DCR)
assumption holds if for all PPT adversaries A:

AdvDCR
N,A (λ) := |Pr[A(N, zN

0) = 1]− Pr[A(N, z) = 1]| = negl(λ),

where the probability is taken over z0 ←R Z∗N , z ←R Z∗N2 .

Learning With Errors

We now provide minimal background on lattice-based cryptography.

Gaussian distributions. For any vector c ∈ Rn and any parameter σ ∈ R>0, let ρσ,c(x) :=

exp
(
−π‖x−c‖2

2
σ2

)
be the Gaussian function on Rn with center c and parameter σ. Let ρσ,c(Λ) :=

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over Λ, and let DΛ,σ,c be the discrete Gaussian

distribution over Λ with center c and parameter σ. Namely, for all y ∈ Λ,

DΛ,σ,c(y) :=
ρσ,c(y)
ρσ,c(Λ)

.

To keep notation simple, we abbreviate ρσ,0 and DΛ,σ,0 as ρσ and DΛ,σ, respectively.

2.3 Definitions for Single-Input Functional Encryption 27

Definition 17: LWEq,α,m assumption

Let q, m ∈ N and α ∈ (0, 1) be functions of the security parameter λ ∈ N. We say that
the LWEq,α,m assumption holds if for all PPT adversaries A:

AdvLWE
q,α,m,A := |Pr[A(q, A, As + e) = 1]− Pr[A(q, A, u) = 1]| = negl(λ),

where the probability is taken over A←R Zm×λ
q , s←R Zλ

q , e← Dm
Z,αq.

[Reg05] gives a quantum reduction from a worst-case lattice problem to LWE. We now
present a so-called multi-hint extended LWE assumption, which is stronger than the latter in
general. For some parameters, it has been shown in [ALS16] to be no stronger than LWE.

Definition 18: mheLWEq,α,m,t,D assumption

Let q, m, t ∈ N, α ∈ (0, 1), D be a distribution over Zt×m, all functions of the se-
curity parameter λ ∈ N. We say that the the multi-hint extended LWE assumtpion,
mheLWEq,α,m,t,D, holds, if for all PPT adversaries A:

AdvmheLWE
q,α,m,t,D,A := |Pr[A(q, A, As + e, Z, Ze) = 1]− Pr[A(q, A, Z, Ze, u) = 1]| = negl(λ),

where the probability is taken over A←R Zm×λ
q , s←R Zλ

q , Z←R D, e← Dm
Z,αq.

Theorem 1: Reduction from LWEq,α′,m to mheLWEq,α,m[ALS16]

Let n ≥ 100, q ≥ 2, t < n, and m ∈ N such that m ≥ Ω(n log n) and m ≤ nO(1). There
exists ξ ≤ O(n4m2 log5/2(n)) and a distribution D over Zt×m such that the following
statements hold:

• There is a reduction from LWEq,α,m in dimension λ − t to mheLWEq,αξ,m,t,D that
reduces the advantage by at most 2Ω(t−n).

• It is possible to sample from D in time polynomial in λ.

• Each entry of matrix D is an independent discrete Gaussian Di,j = DZ,σi,j ,ci,j for
some ci,j ∈ {0, 1} and σi,j ≥ Ω(mn log m).

• With probability at least 1 − n−ω(1), all rows from a sample of D have norms at
most ξ.

Definitions for Single-Input Functional Encryption

We now proceed to give definitions of functional encryption, originally given in [O’N10, BSW11].

Definition 19: Functional Encryption

A functionality F defined over (K,X) is a function F : K × X → Z. The set K is called
the key space, the set X is called the message space, and Z is called the output space. A
functional encryption scheme consists of the following PPT algorithms:

• GSetup(1λ, F): on input the security parameter λ and a functionality F , outputs

28 Chapter 2. Preliminaries

global public key gpk.

• Setup(1λ, gpk, F): on input the security parameter λ, the global public key gpk, and
a functionality F , outputs an encryption key ek, and a master secret key msk.

• Enc(gpk, ek, x): on the global public parameters gpk, an encryption key ek, and a
message x ∈ X , outputs a ciphertext ct.

• KeyGen(gpk, msk, k): on input the global public key gpk, a master secret key msk

and a key k ∈ K, outputs a decryption key dkk.

• Dec(gpk, dkk, ct): on input the global public key gpk, a decryption key dkk and a
ciphertext ct, outputs z ∈ Z, or a special rejection symbol ⊥ if it fails.

The scheme FE for functionality F is correct if for all k ∈ K and all x ∈ X , we have:

Pr




gpk← GSetup(1λ, F);

(ek, msk)← Setup(1λ, gpk, F);

dkk ← KeyGen(gpk, msk, k);

Dec(gpk, dkk, Enc(gpk, ek, x)) = F (k, x)




= 1− negl(λ),

where the probability is taken over the coins of GSetup, Setup, KeyGen and Enc. The
scheme is said to be public-key if ek is public, private-key otherwise.

Remark 1: Need for a global setup, multi-instance security

We split the setup, which is typically a single algorithm, into two algorithms: the global
setup, that produces a global public key, and another setup that uses the global public
key to produce the encryption key and master secret key. We do so since we will use many
instances of FE as part of larger schemes, and they must share common public parameters,
so as to ensure compatibility. For instance, in Chapter 4, we will use different instances of
(single-input) FE, to build multi-input FE (defined below) with independent encryption
and master secret keys, but working on the same group.

Security notions

Following [AGVW13], we may consider 8 security notions xx-yy-zzz where xx ∈ {one, many}
refers to the number of challenge ciphertexts; yy ∈ {SEL, AD} refers to the fact that encryption
queries are selectively or adaptively chosen; zzz ∈ {IND, SIM} refers to indistinguishability vs
simulation-based security. We have the following trivial relations: many ⇒ one, AD ⇒ SEL,
and the following standard relations: SIM⇒ IND, and one-yy-IND⇒ many-yy-IND, the latter
in the public-key setting. We start by describing the strongest notion, namely, many-AD-SIM.
We then present the weaker notions. All the definitions we present are in the multi-instance
setting (see Remark 1).

Definition 20: multi-instance, many-AD-SIM secure FE

A functional encryption FE := (GSetup, Setup, Enc, KeyGen, Dec) is many-AD-SIM se-

cure for n instances, if there exists a PPT simulator (G̃Setup, S̃etup, Ẽnc, K̃eyGen) such
that for every PPT adversary A and every security parameter λ ∈ N, the following two
distributions are computationally indistinguishable:

2.3 Definitions for Single-Input Functional Encryption 29

Experiment REALFE(1λ,A): Experiment IDEALFE(1λ,A):

gpk← GSetup(1λ, F) (g̃pk, td)← G̃Setup(1λ, F)

∀i ∈ [n]: (eki, mski)← Setup(1λ, gpk, F) ∀i ∈ [n]: (ẽki, m̃ski)← S̃etup(1λ, g̃pk, F)

α← AOEnc(·,·),OKeygen(·,·)(gpk, (eki)i∈[n]) α← AÕEnc(·,·), ˜OKeyGen(·,·)(g̃pk, (ẽk)i∈[n])

The encryption keys (highlighted in gray) are only given to the adversary in a public-key
scheme. The oracle OKeygen(i, k), on input an instance i ∈ [n], and a key k ∈ K,
returns KeyGen(gpk, mski, k); OEnc(i, x), on input an instance i ∈ [n], and a message

x ∈ X , returns Enc(gpk, eki, x); ˜OKeyGen(i, k), on input i ∈ [n] and k ∈ K, adds k to
Q(i)

dk (the set of all decryption key queried for instance i, initially empty), and returns

K̃eyGen
(
td, m̃ski, k, {F (k, x)}

x∈Q
(i)
ct

)
, where Q(i)

ct denotes the sets of queries to ÕEnc (ini-

tially empty); ÕEnc(i, x), on input i ∈ [n] and x ∈ X , adds x to Q(i)
ct , and returns

Ẽnc

(
td, ẽki, m̃ski, {k, F (k, x)}

k∈Q
(i)
dk

)
.

Weaker notion of many-AD-SIM security. The definition above is stronger than the
standard simulation-based definition, where the algorithm Ẽnc and K̃eyGen take all the infor-
mation leaked by the ideal functionality. In particular, to generate a simulated decryption key
for key k ∈ K and instance i ∈ [n], K̃eyGen takes as input not only the values {F (k, x)}

x∈Q
(i)
ct

,

but also all the values {k′, F (k′, x)}
k′∈Q

(i)
dk

,x∈Q
(i)
ct

, for keys k′ for which decryption keys were

previously issued. The same applies to the algorithm Ẽnc. We choose to work with the stronger
simulation definition above, for simplicity, since the schemes presented in this work achieve it
anyway.

We now consider the indistinguishability variant of the previous notion.

Definition 21: multi-instance, many-AD-IND secure FE

A functional encryption scheme FE := (GSetup, Setup, Enc, KeyGen, Dec), is many-AD-
IND secure for n instance if for every stateful PPT adversary A, we have:

Adv
many-AD-IND
FE,A,n (λ) =

∣∣∣Pr
[
AD-INDFE0 (1λ, 1n,A) = 1

]
− Pr

[
AD-INDFE1 (1λ, 1n,A) = 1

]∣∣∣

= negl(λ),

where the experiments are defined for β ∈ {0, 1} as follows:

Experiment AD-INDFEβ (1λ, 1n,A):

gpk← GSetup(1λ, F)
∀i ∈ [n] : (eki, mski)← Setup(1λ, gpk, F)
α← AOEnc(·,·),OKeygen(·,·)

(
gpk, (eki)i∈[n]

)

Output: α

The encryption key (highlighted in gray) is only given to the adversary in a public-key
scheme. The oracle OEnc(i, (x0, x1)), on input an instance i ∈ [n] and a pair of messages
(x0, x1) ∈ X 2, returns Enc(gpk, eki, xβ). The oracle OKeygen(i, k), on input an instance
i ∈ [n] and a key k ∈ K, returns KeyGen(gpk, mski, k). For any instance i ∈ [n], the

30 Chapter 2. Preliminaries

queries k of adversary A to OKeygen(i, ·) must satisfy the following condition, for all
queries (x0, x1) to OEnc(i, ·): F (k, x0) = F (k, x1). That is, for a given instance i ∈ [n],
the decryption keys should not be able to distinguish any challenge message pairs.

Clearly, single-instance (that is, n = 1 in the above definition) is implied by the multi-
instance security (n > 1). By a standard hybrid argument over the n instances, the converse
is also true.

Lemma 5: Single-instance implies multi-instance security

For any scheme FE , PPT adversary A, xx ∈ {many,one}, yy ∈ {AD,SEL}, there exists a
PPT adversary B such that for all security parameters λ:

Adv
xx-yy-IND
FE,A,n (λ) ≤ n · Adv

xx-yy-IND
FE,B,1 (λ).

Proof of Lemma 5 (sketch). We only give a high-level sketch of the proof, which uses a stan-
dard hybrid argument over the n instances. Namely, we define n games, where the i’th game
answers all the queries (j, (x0, x1)) to OEnc for j ≤ i with Enc(gpk, ekj , x1), and for j > i,
answers with Enc(gpk, eki, x0). To transition from hybrid i to i + 1, we use the single instance
security for the queries to OEnc on the i + 1’st instance. The rest can be simulated simply by
sampling (ekj , mskj)← Setup(1λ, gpk, F), for all j 6= i + 1, since gpk is known.

We consider the following weaker notions of security.

One ciphertext, one-yy-zzz: the adversary A can only query its encryption oracle OEnc

once per instance i ∈ [n].

Selective security, xx-SEL-zzz: the adversary A must send its queries to OEnc before-
hand, that is, before receiving the gpk (and the (eki)i∈[n], in the public-key setting) from the
experiment, and before querying OKeygen.

These weaker security notions may appear artificial, and indeed, the desirable security
notions are many-AD-IND or many-AD-SIM, both of which capture natural attacks. However,
they are still useful as a first step towards many-yy-IND security. For instance, as explained
below, in the public-key setting, one-yy-IND implies many-yy-IND. Also, using a guessing
argument (see, for instance, [BB04], in the context of Identity-Based Encryption), one can
turn any selectively-secure scheme into an adaptively-secure scheme, albeit with an exponential
security loss.

Remark 2: Semi-adaptive security

In the context of Attribute-Based Encryption (which is a particular case of Functional
Encryption), [CW14] put forth the notion of semi-adaptive security, where the adversary
has to send its challenge messages before querying any decryption keys, but after receiving
the public key from its experiment. This notion lies in between adaptive and selective
security, namely, it is implied by the former, and implies the latter. In [GKW16], the
authors give a generic transformation that turns any selectively-secure FE into a semi-
adaptive secure FE, only using Public-Key Encryption.

It is also known that one-xx-IND security implies many-xx-IND security, in the public-key
setting.

2.4 Definitions for Multi-Input Functional Encryption 31

Lemma 6: one-xx-IND security implies many-xx-IND security

For any public-key scheme FE , PPT adversary A, xx ∈ {AD,SEL}, there exists a PPT
adversary B such that for all security parameters λ:

Adv
many-xx-IND
FE,A,n (λ) ≤ Q · Advone-xx-IND

FE,B,n (λ),

where Q is an upper bound on the number of queries to OEnc(i, ·), for any i ∈ [n].

Proof of Lemma 6 (sketch). We only give a high-level sketch of the proof, which uses a stan-
dard hybrid argument over the challenge ciphertexts. Namely, we define Q games, where the
i’th game answers the first i query to OEnc(j, (x0, x1)) for any j ∈ [n], with Enc(gpk, ekj , x1),
and the last queries with Enc(gpk, ekj , x1). To transition from hybrid i to i + 1’st, we use
the one-yy-IND security to switch the i + 1’st query from Enc(gpk, ekj , x0) to Enc(gpk, ekj , x1)
simultaneously for all instances j ∈ [n]. The other queries can be addressed using the public
encryption keys ekj .

Definitions for Multi-Input Functional Encryption

We recall the definition of multi-input functional encryption, that has been first introduced
in [GGG+14]. It generalizes functional encryption as follows. In a multi-input functional en-
cryption, encryption is split among n different users, or input slots; each of which encrypts
separately an input xi independently, without any interaction. Then, given a functional de-
cryption key for an n-ary function f , decryption operates on all the n independently generated
ciphertexts and recovers f(x1, · · · , xn). This generalization is useful in applications where the
data to encrypt is distributed among users that do not trust each other; or when the same user
wants to encrypt data at different point in time (without memorizing the randomness used for
prior encryption).

Definition 22: Multi-input Function Encryption

Let {Fn}n∈N be a set of functionality where for each n ∈ N, Fn defined over (Kn,X1, · · · ,Xn)
is a function Fn : Kn × X1 × · · · × Xn → Z. Each i ∈ [n] is called an input slot. The key
space Kn, depends on the arity n. A multi-input functional encryption scheme MIFE
for the set of functionality {Fn}n∈N consists of the following algorithms:

• Setup(1λ, Fn): on input the security parameter λ and a functionality Fn, outputs a
public key pk, encryption keys eki for each input slot i ∈ [n], and a master secret
key msk.

• Enc(pk, eki, xi): on input the public key pk, encryption key eki for the input slot
i ∈ [n], and a message xi ∈ Xi, outputs a ciphertext ct. We assume that each
ciphertext has an associated index i, which denotes what slot this ciphertext can be
used for.

• KeyGen(pk, msk, k): on input the public key pk, the master secret key msk and a
function k ∈ Kn, outputs a decryption key dkk.

• Dec(pk, dkk, ct1, . . . , ctn): on input the public key pk, a decryption key dkk and n
ciphertexts, outputs z ∈ Z, or a sepcial rejection symbol ⊥ if it fails.

32 Chapter 2. Preliminaries

The scheme MIFE is correct if for all k ∈ Kn and all xi ∈ Xi for i ∈ [n], we have:

Pr




(pk, msk, (eki)i∈[n])← Setup(1λ, Fn);

dkk ← KeyGen(pk, msk, k);

Dec(pk, dkk, Enc(pk, ek1, x1), . . . , Enc(pk, ekn, xn)) = Fn(k, x1, . . . , xn)


 = 1−negl(λ),

where the probability is taken over the coins of Setup, KeyGen and Enc.
The scheme is public-key if eki = ∅, that is, the encryption algorithm Enc only requires

the public pk to encrypt messages. It is private-key otherwise.

Security notions

As for the case of single-input FE, we may consider 8 security notions xx-yy-zzz where xx
∈ {one, many} refers to the number of challenge ciphertexts; yy ∈ {SEL, AD} refers to the
fact that encryption queries are selectively or adaptively chosen; zzz ∈ {IND, SIM} refers
to indistinguishability vs simulation-based security. Since simulation-security is impossible in
general as proven in [BSW11], we will restrict ourselves to indistinguishability-based security
definition. We defer to [BLR+15] for a description of simulation-based security definitions.
Although the multi-instance setting for single-input FE is relevant to this work, the multi-
instance for the multi-input setting is not. For simplicity, we focus on the single-instance
setting here.

One novelty compared to the single-input setting is that some input slots can collude,
and should not be able to break the security of the encryption for the other slots. This is
captured, in the security game, by the oracle OCorrupt, that on input a slot i ∈ [n], returns the
corresponding encryption key eki. The public-key setting essentially corresponds to the case
where all eki are public. In particular, the adversary can encrypt any message for any slot,
and decrypt them with the challenge ciphertexts for the other slots. This inherent leakage
of information (it is allowed for an adversary to learn this information, by correctness of the
MIFE) is captured by the Condition 1 in the many-AD-IND security game.

Definition 23: many-AD-IND secure MIFE

A multi-input functional encryption MIFE := (Setup, Enc, KeyGen, Dec) for the set of
functionalities {Fn}n∈N, is many-AD-IND secure if for every stateful PPT adversary A,
we have:

Adv
many-AD-IND
MIFE,A (λ) =

∣∣∣Pr
[
AD-INDMIFE0 (1λ,A) = 1

]
− Pr

[
AD-INDMIFE1 (1λ,A) = 1

]∣∣∣

= negl(λ),

where the experiments are defined for all β ∈ {0, 1} as follows:

Experiment AD-INDMIFEβ (1λ,A):

(pk, msk, (eki)i∈[n])← Setup(1λ, Fn)
α← AOEnc(·,·,·),OKeygen(·),OCorrupt(·)(pk)
Output: α

The oracle OEnc, on input (i, x0
i , x1

i), returns Enc(pk, eki, xβ
i). For all input slots i ∈ [n],

we denote by Qi the set of queries to OEnc for slot i, and Qi the size of Qi. The oracle
OKeygen, on input k ∈ Kn, returns KeyGen(pk, msk, k). The oracle OCorrupt, on input
i ∈ [n], returns eki. We denote by CS ⊆ [n] the set of corrupted slots. The queries of
adversary A must satisfy the following condition.

2.4 Definitions for Multi-Input Functional Encryption 33

Condition 1:

• For all i ∈ CS, all (x0
i , x1

i) ∈ Qi, we have x0
i = x1

i .

• A only makes queries k to OKeygen(·) satisfying

Fn(k, x0
1, . . . , x0

n) = Fn(k, x1
1, . . . , x1

n)

for all possible vectors (xb
i)i∈[n],b∈{0,1}, where for all i ∈ [n], we have: either (x0

i , x1
i) ∈

Qi, or (i ∈ CS and x0
i = x1

i).

If the condition is not satisfied, the experiment outputs 0 instead of α.

Remark 3: Winning condition

Note that Condition 1 is in general not efficiently checkable because of the combinatorial
explosion in the restriction of the queries.

We consider the following weaker security notions.

One ciphertext, one-yy-IND: the adversary A can only query OEnc once per input slot
i ∈ [n], that is, Qi ≤ 1 for all i ∈ [n].

Selective security, xx-SEL-IND: the adversaryAmust send its challenge {xj,b
i }b∈{0,1},i∈[n],j∈[Qi]

beforehand, that is, before receiving the public key from the experiment, and before querying
OKeygen or OCorrupt.

Static corruption, xx-yy-IND-static: the adversary A must send its queries to OCorrupt

before any other query.

Zero decryption keys, xx-yy-IND-zero: the adversary A does not query OKeygen.

Extra condition, xx-yy-IND-weak: the adversary A must send at least one challenge per
slot that is not corrupted, that is, for all i ∈ [n] \ CS, we have: Qi ≥ 1.

These weaker security notions may appear to impose unrealistic restrictions on the adver-
sary. As for the case of single-input FE, it is useful to start building a simpler scheme which
only satisfies a weak security notion, then turn it into a many-AD-IND secure scheme. In fact,
we show how to generically transform any xx-yy-IND-weakly and xx-yy-IND-zero secure MIFE
into a full-fledged xx-yy-IND secure MIFE, only using symmetric-key encryption.

Removing the extra condition generically

Here we show how to remove the extra condition from any multi-input FE that is both xx-yy-
IND-weak and xx-yy-IND-zero secure, for any xx ∈ {one,many}, and yy ∈ {AD,SEL}, using
an extra layer of symmetric-key encryption. A similar approach is used in [AGRW17]. Namely,
[AGRW17] uses a symmetric key to encrypt the original ciphertexts. The symmetric key is
shared across users, and the i’th share is given as part of any ciphertext for input slot i ∈ [n].
Thus, when ciphertexts are known for all slots i ∈ [n], the decryption recovers all shares of
the symmetric key, and decrypt the outer layer, to get the original ciphertext. The rest of
decryption is performed as in the original multi-input FE.

The problem with this approach is that the encryption algorithm needs to know the sym-
metric key (and not just a share of it). Thus, corrupting one input slot allows the adversary

34 Chapter 2. Preliminaries

to recover the entire symmetric key, and break the security of the scheme. Such problem did
not arise in [AGRW17], which does not consider corruptions of input slots. To circumvent
this issue, as in [DOT18], we use the symmetric key to encrypt the functional decryption keys,
instead of encrypting the ciphertexts. Each encryption key eki for input slot i ∈ [n] contains
the i’th share of the symmetric key, but the full symmetric key is only needed by the key
generation algorithm, which knows msk. If one share is missing, all the functional decryption
keys are random. We conclude the security proof using the security of the overall multi-input
FE when zero functional decryption keys are queried.

Setup(1λ, Fn):

(pk′, msk′, (ek′
i)i∈[n])← Setup′(1λ, Fn)

K←R K
k1, . . . , kn−1 ←R {0, 1}λ, kn =

(⊕
i∈[n−1] ki

)
⊕ K

pk := pk′, msk := (msk′, K),∀i ∈ [n] : eki := (ek′
i, ki)

return
(
pk, msk, (eki)i∈[n]

)

Enc(pk, eki, xi):

parse eki = (ek′
i, ki)

ct′ ← Enc′(pk′, ek′
i, xi)

return (ki, ct′)

KeyGen(pk, msk, k):

parse msk = (msk′, K)
dk′

k ← KeyGen′(pk′, msk′, k)
dkk ← EncSE(K, dk′

k)
return dkk

Dec(pk, dkk, ct1, . . . , ctn):
parse {cti = (ki, ct′

i)}i∈[n]

K←⊕
i∈[n] ki

dk′
k ← DecSE(K, dkk)

return Dec′(dk′
k, ct′

1, . . . , ct′
n).

Figure 2.1: Compiler from any MIFE ′ := (Setup′, Enc′, KeyGen′, Dec′) with xx-yy-weak and xx-yy-
zero security to the MIFE := (Setup, Enc, KeyGen, Dec) with xx-yy security. Here, (EncSE, DecSE) is a
symmetric key encryption scheme with key space K as defined in Definition 2.

Theorem 2: Removing the extra condition

LetMIFE ′ be a xx-yy-IND-weak and xx-yy-IND-zero secure MIFE, for any xx ∈ {one,many},
and any yy ∈ {AD,SEL}, and (Gen, EncSE, DecSE) be a symmetric encryption scheme. The
scheme MIFE defined in Figure 2.1 is xx-yy-IND secure.

Proof of Theorem 2 (sketch). We consider two cases:

• Case 1: there exists some i ∈ [n] for which Qi = 0, and i /∈ CS. That is, the adversary
never queries OEnc or OCorrupt on slot i. Here, ki and thus K is perfectly hidden from
the adversary. Then, by semantic security of (GenSE, EncSE, DecSE), the decryption keys
are pseudo-random. We conclude using the xx-yy-IND-zero security of MIFE ′.

• Case 2: for all i, Qi ≥ 1. Here, security follows immediately from the xx-yy-IND-weak
security of the underlying MIFE ′.

2.5 Definitions for Multi-Client Functional Encryption 35

Definitions for Multi-Client Functional Encryption

We now present the definition of multi-client functional encryption (MCFE), originally given in
[GGG+14], which enhances multi-input functional encryption in the following way. In MCFE,
the encryption algorithm takes as an additional input a label (typically a time-stamp), and
ciphertexts from different input slots can only be combined when they are encrypted under the
same label. The limits the leakage of information from the encrypted messages. Multi-input
functional encryption corresponds to the case where every message is encrypted under the same
label.

Definition 24: Multi-Client Function Encryption

Let {Fn}n∈N be a set of functionality where for each n ∈ N, Fn defined over (Kn,X1, · · · ,Xn)
is a function Fn : Kn ×X1 × · · · × Xn → Z. Each i is called an input slot. The key space
Kn, depends on the arity n. A multi-client functional encryption scheme MCFE for the
set of functionality {Fn}n∈N consists of the following algorithms:

• Setup(1λ, Fn): on input the security parameter λ and a functionality Fn, outputs a
public key pk, encryption keys eki for each input slot i ∈ [n], and a master secret
key msk.

• Enc(pk, eki, xi, ℓ): on input the public key pk, encryption key eki for the input slot
i ∈ [n], a message xi ∈ Xi, and a label ℓ, it outputs a ciphertext ct.

• KeyGen(pk, msk, k): on input the public key pk, the master secret key msk and a
function k ∈ Kn, it outputs a decryption key dkk.

• Dec(pk, dkk, ct1, . . . , ctn, ℓ): on input the public key pk, a decryption key dkk, n
ciphertexts and a label ℓ, outputs z ∈ Z, or a special rejection symbol ⊥ if it fails.

The scheme MCFE is correct if for all k ∈ Kn, all xi ∈ Xi for i ∈ [n], and all label ℓ,
we have:

Pr




(pk, msk, (eki)i∈[n])← Setup(1λ, Fn);

dkk ← KeyGen(pk, msk, k);

Dec(pk, dkk, Enc(pk, ek1, x1, ℓ), . . . , Enc(pk, ekn, xn, ℓ), ℓ) = Fn(k, x1, . . . , xn)




= 1− negl(λ),

where the probability is taken over the coins of Setup, KeyGen and Enc.
The scheme is public-key if eki = ∅, that is, the encryption algorithm Enc only requires

the public pk to encrypt messages. It is private-key otherwise.

Definition 25: many-AD-IND secure MCFE

A multi-client functional encryption MCFE := (Setup, Enc, KeyGen, Dec) for the set of
functionalities {Fn}n∈N, is many-AD-IND secure if for every stateful PPT adversary A,
we have:

Adv
many-AD-IND
MCFE,A (λ) =

∣∣∣Pr
[
AD-INDMCFE0 (1λ,A) = 1

]
− Pr

[
AD-INDMCFE1 (1λ,A) = 1

]∣∣∣

= negl(λ),

where the experiments are defined for β ∈ {0, 1} as follows:

36 Chapter 2. Preliminaries

Experiment AD-INDMCFEβ (1λ,A):

(pk, msk, (eki)i∈[n])← Setup(1λ, Fn)
α← AOEnc(·,·,·),OKeygen(·),OCorrupt(·)(pk)
Output: α

The oracle OEnc, on input (i, (x0
i , x1

i), ℓ), returns Enc(pk, eki, xβ
i , ℓ). For all input slots

i ∈ [n], and label ℓ, we denote by Qi,ℓ the set of queries to OEnc for slot i and label ℓ, and
Qi,ℓ the size of Qi,ℓ. The oracle OKeygen, on input k ∈ Kn, returns KeyGen(pk, msk, k).
The oracle OCorrupt, on input i ∈ [n], returns eki. We denote by CS ⊆ [n] the set of
corrupted slots. The queries of adversary A must satisfy the following condition.

Condition 1:

• For all i ∈ CS, all labels ℓ, all (x0
i , x1

i) ∈ Qi,ℓ, we have x0
i = x1

i .

• A only makes queries k to OKeygen(·) satisfying

Fn(k, x0
1, . . . , x0

n) = Fn(k, x1
1, . . . , x1

n)

for all labels ℓ and all vectors (xb
i)i∈[n],b∈{0,1} such that for all i ∈ [n], we have: either

(x0
i , x1

i) ∈ Qi,ℓ, or (i ∈ CS and x0
i = x1

i).

If the condition is not satisfied, the experiment outputs 0 instead of α.

We consider the following weaker security notions.

one-AD-IND security: the adversary A can only query OEnc once for each input slot
i ∈ [n] and label ℓ, that is, Qi,ℓ ≤ 1 for all i ∈ [n] and all labels ℓ.

xx-AD-IND-weak security: The queries of adversary A must satisfy the following extra
condition: if there exists a label ℓ and a slot i ∈ [n] such that (x0

i , x1
i) ∈ Qi,ℓ with x0

i 6= x1
i ,

then for all j ∈ [n], we must have either j ∈ CS or Qj,ℓ > 1. Intuitively, this condition restricts
the adversary to use challenge ciphertexts for all input slots i ∈ [n] for a given label ℓ. In fact,
Condition 1 does not consider the information that may be leaked from partial ciphertexts,
since for all i ∈ [n], we must have either a query (x0

i , x1
i) ∈ Qi,ℓ, or i ∈ CS. The extra

condition simply prevents the occurrence of such partial ciphertexts in the security game.
This artificial notion will be a useful stepping stone towards full-fledged xx-AD-IND security.

We now present a decentralized variant of multi-client functional encryption, where the
generation of functional decryption keys does not require a trusted third party: the master
secret key is split across users into several keys; each user can generate a share of the functional
decryption keys, without any interaction; then the shares can be publicly combined to obtain
a functional decryption key.

2.5 Definitions for Multi-Client Functional Encryption 37

Definition 26: Decentralized Multi-Client Function Encryption

Let {Fn}n∈N be a set of functionality where for each n ∈ N, Fn defined over (Kn,X1, · · · ,Xn)
is a function Fn : Kn ×X1 × · · · × Xn → Z. Each i is called an input slot. The key space
Kn, depends on the arity n. A decentralized multi-client functional encryption scheme
DMCFE for the set of functionality {Fn}n∈N consists of the following algorithms:

• Setup(1λ, Fn): on input the security parameter λ and a functionality Fn, outputs a
public key pk, encryption keys eki for each input slot i ∈ [n], and secret keys ski for
each input slot i ∈ [n].

• Enc(pk, eki, xi, ℓ): on input the public key pk, encryption key eki for the input slot
i ∈ [n], a message xi ∈ Xi, and a label ℓ, it outputs a ciphertext ct.

• KeyGen(pk, ski, k): on input the public key pk, the secret key ski for slot i ∈ [n], and
a function k ∈ Kn, it outputs a partial decryption key dkk,i.

• KeyComb(pk, {dkk,i}i∈[n], k): on input the public key pk, n partial decryption keys
keys, and a key k, it combines its input to produce a decryption key dkk.

• Dec(pk, dkk, ct1, . . . , ctn, ℓ): on input the public key pk, a decryption key dkk, n
ciphertexts and a label ℓ, outputs z ∈ Z, or a special rejection symbol ⊥ if it fails.

The scheme DMCFE is correct if for all k ∈ Kn, all xi ∈ Xi for i ∈ [n], and all label
ℓ, we have:

Pr




(pk, (eki, ski)i∈[n])← Setup(1λ, Fn);

∀i ∈ [n] : dkk,i ← KeyGen(pk, ski, k);

dkk ← KeyComb(pk, (dki,k)i∈[n], k);

Dec(pk, dkk, Enc(pk, ek1, x1, ℓ), . . . , Enc(pk, ekn, xn, ℓ), ℓ) = Fn(k, x1, . . . , xn)




= 1− negl(λ),

where the probability is taken over the coins of Setup, KeyGen, KeyComb and Enc.
The scheme is public-key if eki = ∅, that is, the encryption algorithm Enc only requires

the public pk to encrypt messages. It is private-key otherwise.

We now present the many-AD-IND security notion for decentralized multi-client functional
encryption. The difference with centralized multi-client functional encryption is that the shares
of the functional decryption keys can be corrupted, instead of the functional decryption keys
themselves. The oracle OCorrupt also give out the secret key ski in addition of eki, when
queried on input slot i ∈ [n].

Definition 27: many-AD-IND secure DMCFE

A decentralized multi-client functional encryptionDMCFE := (Setup, Enc, KeyGen, KeyComb,
Dec) for the set of functionalities {Fn}n∈N, is many-AD-IND secure if for every stateful
PPT adversary A, we have:

Adv
many-AD-IND
DMCFE,A (λ) =

∣∣∣Pr
[
AD-INDDMCFE0 (1λ,A) = 1

]
− Pr

[
AD-INDDMCFE1 (1λ,A) = 1

]∣∣∣

= negl(λ),

where the experiments are defined for β ∈ {0, 1} as follows:

38 Chapter 2. Preliminaries

Experiment AD-INDMCFEβ (1λ,A):

(pk, (eki, ski)i∈[n])← Setup(1λ, Fn)
α← AOEnc(·,·,·),OKeygen(·,·),OCorrupt(·)(pk)
Output: α

The oracle OEnc, on input (i, (x0
i , x1

i), ℓ), returns Enc(pk, eki, xβ
i , ℓ). For any input slot

i ∈ [n], and label ℓ, we denote by Qi,ℓ the set of queries to OEnc for slot i and label ℓ,
and Qi,ℓ the size of Qi,ℓ. The oracle OKeygen(i, k), on input i ∈ [n], and k ∈ Kn, returns
KeyGen(pk, ski, k). The oracle OCorrupt, on input i ∈ [n], returns (eki, ski). We denote by
CS ⊆ [n] the set of corrupted slots. The queries of adversary A must satisfy the following
condition.

Condition 1:

• For all i ∈ CS, all labels ℓ, all (x0
i , x1

i) ∈ Qi,ℓ, we have x0
i = x1

i .

• if A queries OKeygen(·, ·) on the same key k for all slots i ∈ [n], then it must be
that:

Fn(k, x0
1, . . . , x0

n) = Fn(k, x1
1, . . . , x1

n)

for all labels ℓ and all vectors (xb
i)i∈[n],b∈{0,1} such that for all i ∈ [n], we have: either

(x0
i , x1

i) ∈ Qi,ℓ, or (i ∈ CS and x0
i = x1

i).

If the condition is not satisfied, the experiment outputs 0 instead of α.

Concrete Instances of Functional Encryption for Inner

Products

In this section, we recall the public-key single-input functional encryption schemes from [ALS16],
which are proven many-AD-IND secure for the inner products.

We recall the additional properties defined in [ACF+18], which will be useful to obtain
multi-input FE from single-input FE for inner products, in Chapter 4.

Inner-Product FE from MDDH

Here we present the FE for bounded norm inner products from [ALS16, Section 3], generalized
to the Dk(p)-MDDH setting, as in [AGRW17, Figure 15]. It handles the following functionality
F m,X,Y

IP : K × X → Z, with X := [0, X]m, K := [0, Y]m, Z := Z, and for all x ∈ X , y ∈ Y, we
have:

F m
IP (y, x) = 〈x, y〉.

This restriction on the norm of x ∈ X and y ∈ K is necessary for the correctness of the scheme.
Note that the scheme actually supports vector of arbitrary norms, as long as we only want to
decrypt the result in the exponent (see Remark 4).

In [ALS16], it was proven many-AD-IND secure under the DDH assumption. We extend
the one-SEL-SIM security proof given in [AGRW17] to the multi-instance setting. Note that
in the public-key setting, one-SEL-IND security (which is implied by one-SEL-SIM security)
implies many-SEL-IND security. Finally, we also extend the many-AD-IND security proof from
[AGRW17] to the multi-instance setting. We also show that is satisfies Property 1 (two-step
decryption) and Property 2 (linear encryption).

2.6 Concrete Instances of Functional Encryption for Inner Products 39

GSetup(1λ, F m,X,Y
IP):

G := (G, p, P)← GGen(1λ), A←R Dk(p), gpk := (G, [A])
Return gpk

Setup(1λ, gpk, F m,X,Y
IP):

W←R Z
m×(k+1)
p , ek := [WA], msk := W

Return (ek, msk)

Enc(gpk, ek, x):
r←R Zk

p

Return
[
−Ar

x + WAr

]
∈ Gk+m+1

KeyGen(gpk, msk, y):

Return
(

W⊤y
y

)
∈ Zk+m+1

p

Dec(pk, [c], d):
C := [c⊤d]
Return log(C)

Figure 2.2: FE , a functional encryption scheme for the functionality F m,X,Y
IP , whose one-SEL-SIM

security is based on the Dk(p)-MDDH assumption.

Correctness. We have C = [x⊤y] ∈ G. Since x ∈ [0, X]m and y ∈ [0, Y]m, we have
〈x, y〉 < m ·X · Y . Thus, we can efficiently recover the discrete log 〈x, y〉 as long as m, X, Y
are polynomials in the security parameter.

40 Chapter 2. Preliminaries

Remark 4: Correctness for vectors with large norm

Note that the the functional encryption scheme FE presented in Figure 5.7 supports
vectors x, y ∈ Zm of arbitrary norm, where the decryption efficiently recovers [〈x, y〉] ∈ G.
This feature will be used in Chapter 4 to build multi-input FE from single-input FE for
inner products.

Theorem 3: Multi-instance, one-SEL-SIM security

If the Dk(p)-MDDH assumption holds in G, then the single-input FE in Figure 5.7 is
one-SEL-SIM secure, for n instances.

Games: G0, G1, G2 :

{xi}i∈I⊆[n] ← A(1λ, F m,X,Y
IP)

G := (G, p, P)←R GGen(1λ), A←R Dk(p), a⊥ ←R Zk+1
p \ {0} s.t. A⊤a⊥ = 0 , gpk := (G, [A]).

For all i ∈ [n]: Wi ←R Z
m×(k+1)
p , eki := [WiA], cti := OEnc(xi)

α← AOKeygen(·,·)(gpk, {eki}i∈[n], {cti}i∈I)
Return α.

OEnc(xi):

ri ←R Zk
p, ci := Ari, ci ←R Zk+1

p s.t. c⊤
i a⊥ = 1 , c′

i := xi + Wici, c′
i := Wici , return

[
−ci

c′
i

]

OKeygen(i, y):

dky :=
(

W⊤

i y
y

)
. If i ∈ I, dky :=

(
W⊤

i y− 〈xi, y〉 · a⊥

y

)
.

Return dky.

Figure 2.3: Games for the proof of Theorem 3. In each procedure, the components inside a solid
(dotted) frame are only present in the games marked by a solid (dotted) frame. Here, I ⊆ [n] denotes
the set of instances for which a challenge ciphertext is queried.

Proof of Theorem 3. Let A be a PPT adversary, and λ ∈ N be the security parameter. We
proceed with a series of hybrid games, described in Figure 2.3. For any game G, we denote by
AdvG(A) the advantage of A in game G, that is, the probability that the game G outputs 1
when interacting with A.

Game G0: is the experiment REALFE(1λ, 1n,A).

Game G1: is as game G0, except we replace the vector [ci] := [Ari] computed by OEnc(xi)
with [ci] ←R Gk+1 such that c⊤i a⊥ = 1, where a⊥ ←R Zk+1

p \ {0} such that A⊤a⊥ = 0,
using the Dk(p)-MDDH assumption. We do so for all instances i ∈ I simultaneously (recall we
denote by I ⊆ [n] the set of instances for which a challenge ciphertext is queried). Namely, we
prove in Lemma 7 that there exists a PPT adversary B such that

|AdvG0(A)− AdvG1(A)| ≤ Adv
Dk(p)-mddh

G,B (λ) +
1
p

.

2.6 Concrete Instances of Functional Encryption for Inner Products 41

G̃Setup(1λ, F m
IP):

G := (G, p, P) ← GGen(1λ), A ←R Dk(p), a⊥ ←R Zk+1
p \ {0} s.t. A⊤a⊥ = 0, g̃pk := (G, [A]),

td := a⊥. Return (g̃pk, td).

S̃etup(g̃pk, F m
IP):

W̃←R Z
m×(k+1)
p , ẽk := [W̃A], m̃sk := W̃. Return (ẽk, m̃sk).

K̃eyGen
(

td, m̃sk, y, 〈x, y〉
)

:

Return
(

W̃⊤y− 〈x, y〉 · a⊥

y

)
.

Ẽnc(td, ẽk, m̃sk):

c←R Zk+1
p s.t. c⊤a⊥ = 1. Return

[−c

W̃c

]
.

Figure 2.4: Simulator (G̃Setup, S̃etup, K̃eyGen, Ẽnc) for the one-SEL-SIM security of the FE from Fig-
ure 5.7.

Game G2: is the experiment IDEALFE(1λ, 1n,A), where the simulator (G̃Setup, S̃etup, K̃eyGen,
Ẽnc) is described in 2.4. In Lemma 8, we show that game G2 and game G1 are perfectly indis-
tinguishable, using a statistical argument, that crucially relies on the fact that game G1 and
G2 are selective. Namely, we prove in Lemma 8 that

AdvG1(A) = AdvG2(A).

Putting everything together, we obtain:

Advone-SEL-SIM
FE,A,n (λ) ≤ Adv

Dk(p)-mddh

G,B (λ) +
1
p

.

Lemma 7: Game G0 to G1

There exists a PPT adversary B such that

|AdvG0(A)− AdvG1(A)| ≤ Adv
Dk(p)-mddh

G,B (λ) +
1
p

.

Proof of Lemma 7. In game G1, we replace the vectors [Ari] computed by OEnc(xi), with
[ci] ←R Gk+1 such that c⊤i a⊥ = 1, simultaneously for all instances i ∈ [n]. This replacement
is justified by the facts that:

• The following are identically distributed: {Ari}i∈[n] and {Ari + Ar}i∈[n], where for all
i ∈ [n], ri ←R Zk

p, and r←R Zk
p.

• By the Dk(p)-MDDH assumption, we can switch ([A], [Ar]) to ([A], [u]), where A ←R

Dk(p), r←R Zk
p, and u←R Zk+1

p .

• The uniform distribution over Zk+1
p and Zk+1

p \Span(A) are 1
p -close, for any A ∈ Z

(k+1)×k
p

of rank k. So we can take u←R Zk+1
p \ Span(A) instead of uniformly random over Zk+1

p .

Combining these facts, we obtain a PPT adversary B such that |Adv1(A) − Adv0(A)| ≤
Adv

Dk-mddh

G,B (λ) + 1
p .

42 Chapter 2. Preliminaries

Lemma 8: Game G1 to G2

AdvG1(A) = AdvG2(A).

Proof of Lemma 8. We use the fact that the following are identically distributed:

{Wi}i∈[n] and {Wi − xi(a⊥)⊤}i∈[n],

where for all i ∈ [n]: Wi ←R Z
m×(k+1)
p , and a⊥ ←R Zk+1

p such that A⊤a⊥ = 0 and for all
i ∈ [n], c⊤i a⊥ = 1.

The leftmost distribution corresponds to game G1, whereas the rightmost distribution cor-
responds to game G2. We crucially rely on the fact that these games are selective, thus,
the matrices Wi are picked after the adversary A sends its challenge {xi}i∈I , and therefore,
independently of it.

Namely:

(Wi − xi(a⊥)⊤)A = WiA

xi + (Wi − xi(a⊥)⊤)ci = Wici

(Wi − xi(a⊥)⊤)⊤y = W⊤
i y− 〈xi, y〉 · a⊥

which coincides precisely with the output of the simulator. This proves Adv2(A) = Adv1(A).

Theorem 4: Multi-instance, many-AD-IND security

If the Dk(p)-MDDH assumption holds in G, then the single-input FE in Figure 5.7 is
many-AD-IND secure for n instances.

Games: G0,β , G1,β , G⋆
1,β , for β ∈ {0, 1}:

(x0, x1)← A(1λ, F m,X,Y
IP)

G := (G, p, P)←R GGen(1λ), A←R Dk(p), gpk := (G, [A]), a⊥ ←R Zk+1
p \ {0} s. t. A⊤a⊥ = 0 ,

W←R Z
m×(k+1)
p , ek := [WA], ct := OEnc(x0, x1) .

α← AOKeygen(·), OEnc(·) (
ek, ct

)

Return α.

OEnc(x0, x1):

r←R Zk
p, c := Ar, c←R Zk+1

p s.t. c⊤a⊥ = 1 , c′ := xβ + Wc, return
[
−c
c′

]
.

OKeygen(y):

Return
(

W⊤y
y

)

Figure 2.5: Games for the proof of Theorem 4. In each procedure, the components inside a solid
(dotted, gray) frame are only present in the games marked by a solid (dotted, gray) frame. The
encryption oracle OEnc can only be called once by adversary A.

2.6 Concrete Instances of Functional Encryption for Inner Products 43

Proof of Theorem 4. First,because FE described in Figure 5.7 is a public key encryption
scheme, it suffices to prove one-AD-IND security: many-AD-IND follows by a standard hybrid
argument over all challenge ciphertexts (cf Lemma 6). Second, it suffices to prove security for
a single instance, since it implies its many-instance variant, as shown in Lemma 5. We now
prove one-AD-IND security for a single instance.

Let A be a PPT adversary, and λ ∈ N be the security parameter. We proceed with a series
of hybrid games, described below. For any game G, we denote by AdvG(A) the advantage of
A in game G, that is, the probability that the game G outputs 1 when interacting with A.

Games G0,β, for β ∈ {0, 1}: are such that Advone-AD-IND
FE,A,1 (λ) = |AdvG0,0(A)−AdvG0,1(A)| (see

Definition 21).

Games G1,β, for β ∈ {0, 1}: are as games G0,β, except we replace the vector [Ar] computed
by OEnc(x0, x1) with [c] ←R Gk+1, such that c⊤a⊥ = 1, where a⊥ ←R Zk+1

p \ {0} such that
A⊤a⊥ = 0, using the Dk(p)-MDDH assumption. Namely, we prove in Lemma 9 that there
exists a PPT adversary Bβ such that

|AdvG0,β
(A)− AdvG1,β

(A)| ≤ Adv
Dk(p)-mddh

G,Bβ
(λ) +

1
p

.

At this point, we show that AdvG1,0(A) = AdvG1,1(A) in three steps. First, we consider the
selective variant of game G1,β , called G⋆

1,β , where the adversary must commit to its challenge
{xb}b∈{0,1} beforehand. By a guessing argument, we show in Lemma 10 that there exists PPT
adversary A⋆ such that

AdvG1,β
(A) = (X + 1)2m · AdvG⋆

1,β
(A⋆).

Then we prove in Lemma 11 that the game G⋆
1,0 is identical to game G⋆

1,1 using a statistical
argument, which is only true in the selective setting. Namely, for any adversary A′:

AdvG⋆
1,0

(A′) = AdvG⋆
1,1

(A′).

Putting everything together, we obtain:

Advone-AD-IND
FE,A,1 (λ) ≤ 2 · Adv

Dk(p)-mddh

G,B (λ) +
2
p

.

Lemma 9: Game G0,β to G1,β

There exists a PPT adversary Bβ such that

|AdvG0,β
(A)− AdvG1,β

(A)| ≤ Adv
Dk(p)-mddh

G,Bβ
(λ) +

1
p

.

Proof of Lemma 9. This is proof is similar to the proof of Lemma 7, for the one-SEL-SIM
security of FE . We replace the vectors [Ar] computed by OEnc(x0, x1) with [c]←R Gk+1 such
that c⊤a⊥ = 1. This replacement is justified by the facts that:

• By the Dk(p)-MDDH assumption, we can switch ([A], [Ar]) to ([A], [u]), where A ←R

Dk(p), r←R Zk
p, and u←R Zk+1

p .

44 Chapter 2. Preliminaries

• The uniform distribution over Zk+1
p and Zk+1

p \Span(A) are 1
p -close, for any A ∈ Z

(k+1)×k
p

of rank k. Thus, we can chose u ← Zk+1
p \ Span(A) instead of uniformly random over

Zk+1
p .

Combining these facts, we obtain a PPT adversary Bβ such that |AdvG0,β(A)−AdvG1,β(A)| ≤
Adv

Dk(p)-mddh

G,Bβ
(λ) + 1

p .

Lemma 10: Game G1,β to G⋆
1,β

There exists a PPT adversary A⋆ such:

AdvG1,β
(A) = (X + 1)−2m · AdvG⋆

1,β
(A⋆).

Proof of Lemma 10. First, A⋆ guesses the challenge by picking random: {x⋆
b}b∈{0,1} ←R [0, X]2m,

and sends its to the game G⋆
1,β , which is a selective variant of game G1,β. These games are

described in Figure 2.5. Whenever A queries OKeygen, A⋆ forwards the query to its own oracle,
and gives back the answer to A. When A calls OEnc(x0, x1), A⋆ verifies its guess was correct,
that is (x0, x1) = (x⋆

0, x⋆
1). If the guess is incorrect, A⋆ ends the simulation, and sends α := 0

to the game G⋆
1,β . Otherwise, it keeps answering A’s queries to OKeygen as explained, and

forwards A’s output α to the game G⋆
1,β .

WhenA⋆ guesses correctly, it simulates A’s view perfectly. When it fails to guess, it outputs
α := 0. Thus, the probability that A⋆ outputs 1 in G⋆

1,β is exactly (X +1)−2m ·AdvG1,β
(A).

Lemma 11: Game G⋆
1,0 to G⋆

1,1

For all adversaries A′, we have:

AdvG⋆
1,0

(A′) = AdvG⋆
1,1

(A′).

Proof of Lemma 11. We use the fact that the following distributions are identical:

W and W + (x1 − x0)(a⊥)⊤,

where W←R Z
m×(k+1)
p , and a⊥ ←R Zk+1

p such that A⊤a⊥ = 0.
The leftmost distribution corresponds to game G⋆

1,0, while the rightmost distribution cor-
responds to G⋆

1,1, since we have:

(W + (x1 − x0)(a⊥)⊤)A = WA

x0 + (W + (x1 − x0)(a⊥)⊤)c = x1 + Wc

(W + (x1 − x0)(a⊥)⊤)⊤y = W⊤y + (〈x1, y〉 − 〈x0, y〉)a⊥
= W⊤y

The first equality uses the fact that A⊤a⊥ = 0, the second equality uses the fact that c⊤a⊥ = 1,
and the third equality uses the fact that 〈x0, y〉 = 〈x1, y〉 for any y queried to OKeygen.

Note that we are relying on the fact that in these games, W ←R Z
m×(k+1)
p is picked after

the adversary A sends its selective challenge {xb}b∈{0,1}, and therefore, independently of it.

Inner-Product FE from LWE

Here we present the many-AD-IND secure Inner-Product FE from [ALS16, Section 4.1].

2.6 Concrete Instances of Functional Encryption for Inner Products 45

GSetup(1λ, F m,X,Y
IP):

Let integers M, q ≥ 2, real α ∈ (0, 1), and distribution D over Zm×M . Set K := m ·X · Y ,
A←R ZM×λ

q , gpk := (K, A).
Return gpk

Setup(1λ, gpk, F m,X,Y
IP):

Z←R D, U := ZA ∈ Zm×λ
q , ek := U, msk := Z.

Return (ek, msk)

Enc(gpk, ek, x ∈ Zm):

s←R Zλ
q , e0 ←R DM

Z,αq, e1 ←R Dm
Z,αq

c0 := As + e0 ∈ ZM
q

c1 := Us + e1 + x ·
⌊

q
K

⌋
∈ Zm

q

Return ctx := (c0, c1)

KeyGen(gpk, msk, y ∈ Zm):

Return dky :=
(

Z⊤y
y

)
∈ ZM+m

Dec
(
gpk, dky, ctx):

µ′ :=
(

c0

c1

)
⊤

dky mod q.

Return µ ∈ {−K + 1, . . . , K − 1} that minimizes
∣∣⌊ q

K ⌋µ− µ′
∣∣.

Figure 2.6: Functional encryption scheme for the class F m,X,Y
IP , based on the LWE assumption.

Choice of parameters. Following the analysis given in [ALS16], we choose:

• σ1 := Θ
(√

λ log(M) max(
√

M, K)
)

• σ2 := Θ
(
λ7/2M1/2 max(M, K2) log5/2(M)

)

• D := D
m×M/2
Z,σ1

× DZM/2,σ2,u1
× · · · × DZM/2,σ2,um

, where for all i ∈ [m], ui denotes the
i’th canonical vector.

• Let BD be such that with probability at least 1 − λω(1), each row of a sample from
D has norm at most BD. For correctness, we must have: α−1 ≥ K2BDω(

√
log λ),

q ≥ α−1ω(
√

log(λ)).

• M ≥ 4λ log q, m ≤ λO(1), q > mK2

Theorem 5: many-AD-IND security [ALS16]

The FE from Figure 5.8 is correct and many-AD-IND secure under the mheLWEq,α,M,m,D

assumption (see Definition 18).

Inner-Product FE from DCR

Here we present the many-AD-IND secure Inner-Product FE from [ALS16, Section 5.1].

Theorem 6: many-AD-IND security [ALS16]

The FE from Figure 5.9 is correct and many-AD-IND secure under the DCR assumption

46 Chapter 2. Preliminaries

(see Definition 16).

GSetup(1λ, F m,X,Y
IP):

Choose primes p = 2p′ + 1, q = q′ + 1 with prime p′, q′ > 2l(λ) for an l(λ) = poly(λ) such
that factoring is λ-hard, and set N := pq ensuring that m ·X · Y < N . Sample g′ ←R Z∗

N2 ,
g := g′2N mod N2.
Return gpk := (N, g)

Setup(1λ, gpk, F m,X,Y
IP):

s ←R DZm,σ, for standard deviation σ >
√

λ · N5/2, and for all j ∈ [m], hj := gsj mod N2.
ek := {hj}j∈[m], msk := {sj}j∈[m]

Return (ek, msk)

Enc(gpk, ek, x ∈ Zm):
r ←R {0, . . . , ⌊N/4⌋}, C0 := gr ∈ ZN2 , for all j ∈ [m], Cj := (1 + xjN) · hr

j ∈ ZN2

Return ctx := (C0, . . . , Cm) ∈ Zm+1
N2

KeyGen(gpk, msk, y ∈ Zm):
d :=

∑
j∈[m] yjsj ∈ Z.

Return sky := (d, y)

Dec
(
gpk, sky := (d, y), ctx):

C :=
(∏

j∈[m] C
yj

j

)
· C−d

0 mod N2.

Return log(1+N)(C) := C−1 mod N2

N .

Figure 2.7: Functional encryption scheme for the class F m,X,Y
IP , based on the DCR assumption.

Chapter 3

Tightly CCA-Secure Encryption

without Pairings

We present the construction from [GHKW16], which was the first CCA-secure public-key
encryption with a tight security reduction to DDH, without relying on the use of pairings. We
refer to Figure 1.1 for a comparison with related works.

Overview of our construction. In this overview, we will consider a weaker notion of
security, namely tag-based KEM security against plaintext check attacks (PCA) [OP01]. In
the PCA security experiment, the adversary gets no decryption oracle (as with CCA security),
but a PCA oracle that takes as input a tag and a ciphertext/plaintext pair and checks whether
the ciphertext decrypts to the plaintext. Furthermore, we restrict the adversary to only query
the PCA oracle on tags different from those used in the challenge ciphertexts. PCA security
is strictly weaker than the CCA security we actually strive for, but allows us to present our
solution in a clean and simple way. (We show how to obtain full CCA security separately.)

The starting point of our construction is the Cramer-Shoup KEM. The public key is given
by pk := ([M], [M⊤k0], [M⊤k1]) for M←R Z

(k+1)×k
q . On input pk and a tag τ , the encryption

algorithm outputs the ciphertext/plaintext pair

([y], [z]) = ([Mr], [r⊤M⊤kτ]), (3.1)

where kτ = k0 + τk1 and r ←R Zk
q . Decryption relies on the fact that y⊤kτ = r⊤M⊤kτ . The

KEM is PCA-secure under k-Lin, with a security loss that depends on the number of ciphertexts
Q (via a hybrid argument) but independent of the number of PCA queries [CS03, ABP15].

Following the “randomized Naor-Reingold” paradigm introduced by Chen and Wee on
tightly secure IBE [CW13], our starting point is (3.1), where we replace kτ = k0 + τk1 with

kτ =
λ∑

j=1

kj,τj

and pk := ([M], [M⊤kj,b]j=1,...,λ,b=0,1), where (τ1, . . . , τλ) denotes the binary representation of
the tag τ ∈ {0, 1}λ.

Following [CW13], we want to analyze this construction by a sequence of games in which we
first replace [y] in the challenge ciphertexts by uniformly random group elements via random
self-reducibility of MDDH (k-Lin), and then incrementally replace kτ in both the challenge
ciphertexts and in the PCA oracle by kτ + M⊥RF(τ), where RF is a truly random function
and M⊥ is a random element from the kernel of M, i.e., M⊤M⊥ = 0. Concretely, in Game
i, we will replace kτ with kτ + M⊥RFi(τ) where RFi is a random function on {0, 1}i applied
to the i-bit prefix of τ . We proceed to outline the two main ideas needed to carry out this
transition. Looking ahead, note that once we reach Game λ, we would have replaced kτ with

47

48 Chapter 3. Tightly CCA-Secure Encryption without Pairings

kτ + M⊥RF(τ), upon which security follows from a straight-forward information-theoretic
argument (and the fact that ciphertexts and decryption queries carry pairwise different τ).

First idea. First, we show how to transition from Game i to Game i+1, under the restriction
that the adversary is only allowed to query the encryption oracle on tags whose i + 1-st bit is
0; we show how to remove this unreasonable restriction later. Here, we rely on an information-
theoretic argument similar to that of Cramer and Shoup to increase the entropy from RFi to
RFi+1. This is in contrast to prior works which rely on a computational argument; note that
the latter requires encoding secret keys as group elements and thus a pairing to carry out
decryption.

More precisely, we pick a random function RF′i on {0, 1}i, and implicitly define RFi+1 as
follows:

RFi+1(τ) =

{
RFi(τ) if τi+1 = 0

RF′i(τ) if τi+1 = 1

Observe all of the challenge ciphertexts leak no information about RF′i or ki+1,1 since they all
correspond to tags whose i + 1-st bit is 0. To handle a PCA query (τ, [y], [z]), we proceed via
a case analysis:

• if τi+1 = 0, then kτ +RFi+1(τ) = kτ +RFi(τ) and the PCA oracle returns the same value
in both Games i and i + 1.

• if τi+1 = 1 and y lies in the span of M, we have

y⊤M⊥ = 0 =⇒ y⊤(kτ + M⊥RFi(τ)) = y⊤(kτ + M⊥RFi+1(τ)),

and again the PCA oracle returns the same value in both Games i and i + 1.

• if τi+1 = 1 and y lies outside the span of M, then y⊤ki+1,1 is uniformly random given
M, M⊤ki+1,1. (Here, we crucially use that the adversary does not query encryptions with
τi+1 = 1, which ensures that the challenge ciphertexts do not leak additional information
about ki+1,1.) This means that y⊤kτ is uniformly random from the adversary’s view-
point, and therefore the PCA oracle will reject with high probability in both Games i
and i + 1. (At this point, we crucially rely on the fact that the PCA oracle only outputs
a single check bit and not all of kτ + RF(τ).)

Via a hybrid argument, we may deduce that the distinguishing advantage between Games i
and i + 1 is at most Q/q where Q is the number of PCA queries.

Second idea. Next, we remove the restriction on the encryption queries using an idea of
Hofheinz, Koch and Striecks [HKS15] for tightly-secure IBE in the multi-ciphertext setting,
and its instantiation in prime-order groups [GCD+16]. The idea is to create two “independent
copies” of (M⊥, RFi); we use one to handle encryption queries on tags whose i + 1-st bit is 0,
and the other to handle those whose i + 1-st bit is 1. We call these two copies (M∗

0, RF
(0)
i) and

(M∗
1, RF

(1)
i), where M⊤M∗

0 = M⊤M∗
1 = 0.

Concretely, we replace M←R Z
(k+1)×k
q with M←R Z3k×k

q . We decompose Z3k
q into the span

of the respective matrices M, M0, M1, and we will also decompose the span of M⊥ ∈ Z3k×2k
q

into that of M∗
0, M∗

1. Similarly, we decompose M⊥RFi(τ) into M∗
0RF

(0)
i (τ) + M∗

1RF
(1)
i (τ). We

then refine the prior transition from Games i to i + 1 as follows:

• Game i.0 (= Game i): pick y← Z3k
q for ciphertexts, and replace kτ with kτ +M∗

0RF
(0)
i (τ)+

M∗
1RF

(1)
i (τ);

49

basis for Z3k
q

basis for Span(M⊥)

M M0 M1

M∗
0 M∗

1

Figure 3.1: Solid lines mean orthogonal, that is: M⊤M∗
0 = M⊤

1M∗
0 = 0 = M⊤M∗

1 = M⊤
0M∗

1.

• Game i.1: replace y←R Z3k
q with y←R Span(M, Mτi+1);

• Game i.2: replace RF
(0)
i (τ) with RF

(0)
i+1(τ);

• Game i.3: replace RF
(1)
i (τ) with RF

(1)
i+1(τ);

• Game i.4 (= Game i + 1): replace y←R Span(M, Mτi+1) with y←R Z3k
q .

For the transition from Game i.0 to Game i.1, we rely on the fact that the uniform distributions
over Z3k

q and Span(M, Mτi+1) encoded in the group are computationally indistinguishable, even
given a random basis for Span(M⊥) (in the clear). This extends to the setting with multiple
samples, with a tight reduction to the Dk(p)-MDDH Assumption independent of the number
of samples.

For the transition from Game i.1 to i.2, we rely on an information-theoretic argument like
the one we just outlined, replacing Span(M) with Span(M, M1) and M⊥ with M∗

0 in the case
analysis. In particular, we will exploit the fact that if y lies outside Span(M, M1), then y⊤ki+1,1

is uniformly random even given M, Mki+1,1, M1, M1ki+1,1. The transition from Game i.2 to
i.3 is completely analogous.

From PCA to CCA. Using standard techniques from [CS03, KD04, Kil06, BCHK07,
AGK08], we could transform our basic tag-based PCA-secure scheme into a “full-fledged”
CCA-secure encryption scheme by adding another hash proof system (or an authenticated
symmetric encryption scheme) and a one-time signature scheme. However, this would incur an
additional overhead of several group elements in the ciphertext. Instead, we show how to di-
rectly modify our tag-based PCA-secure scheme to obtain a more efficient CCA-secure scheme
with the minimal additional overhead of a single symmetric-key authenticated encryption.
In particular, the overall ciphertext overhead in our tightly CCA-secure encryption scheme is
merely one group element more than that for the best known non-tight schemes [KD04, HK07].

To encrypt a message M in the CCA-secure encryption scheme, we will (i) pick a random
y as in the tag-based PCA scheme, (ii) derive a tag τ from y, (iii) encrypt M using a one-time
authenticated encryption under the KEM key [y⊤kτ]. The naive approach is to derive the tag
τ by hashing [y] ∈ G3k, as in [KD04]. However, this creates a circularity in Game i.1 where the
distribution of [y] depends on the tag. Instead, we will derive the tag τ by hashing [y] ∈ Gk,
where y ∈ Zk

q are the top k entries of y ∈ Z3k
q . We then modify M0, M1 so that the top k

rows of both matrices are zero, which avoids the circularity issue. In the proof of security, we
will also rely on the fact that for any y0, y1 ∈ Z3k

q , if y0 = y1 and y0 ∈ Span(M), then either
y0 = y1 or y1 /∈ Span(M). This allows us to deduce that if the adversary queries the CCA
oracle on a ciphertext which shares the same tag as some challenge ciphertext, then the CCA
oracle will reject with overwhelming probability.

Alternative view-point. Our construction can also be viewed as applying the IBE-to-PKE
transform from [BCHK07] to the scheme from [HKS15], and then writing the exponents of the
secret keys in the clear, thereby avoiding the pairing. This means that we can no longer apply
a computational assumption and the randomized Naor-Reingold argument to the secret key
space. Indeed, we replace this with an information-theoretic Cramer-Shoup-like argument as
outlined above.

50 Chapter 3. Tightly CCA-Secure Encryption without Pairings

Prior approaches. Several approaches to construct tightly CCA-secure PKE schemes ex-
ist: first, the schemes of [HJ12, ACD+12, ADK+13, LPJY14, LJYP14, LPJY15] construct
a tightly secure NIZK scheme from a tightly secure signature scheme, and then use the
tightly secure NIZK in a CCA-secure PKE scheme following the Naor-Yung double encryption
paradigm [NY90, DDN00]. Since these approaches build on the public verifiability of the used
NIZK scheme (in order to faithfully simulate a decryption oracle), their reliance on a pairing
seems inherent.

Next, the works of [CW13, BKP14, HKS15, AHY15b, GCD+16] used a (Naor-Reingold-
based) MAC instead of a signature scheme to design tightly secure IBE schemes. Those
IBE schemes can then be converted (using the BCHK transformation [BCHK07]) into tightly
CCA-secure PKE schemes. However, the derived PKE schemes still rely on pairings, since the
original IBE schemes do (and the BCHK does not remove the reliance on pairings).

In contrast, our approach directly fuses a Naor-Reingold-like randomization argument with
the encryption process. We are able to do so since we substitute a computational randomization
argument (as used in the latter line of works) with an information-theoretic one, as described
above. Hence, we can apply that argument to exponents rather than group elements. This
enables us to trade pairing operations for exponentiations in our scheme.

Road-map. The rest of this chapter is organized as follows. First, we present our key-
encapsulation mechanism (KEM) that is only PCA-secure when there is multiple challenge
ciphertext, with a tight security reduction from DDH. Its security proof already captures most
technical novelties. Then, we show how to upgrade this encryption scheme to obtain tightly,
CCA-secure encryption, using an additional layer of symmetric authenticated encryption, à la
[KD04, HK07].

Multi-ciphertext PCA-secure KEM

In this section we describe a tag-based Key Encapsulation Mechanism KEM that is IND-PCA-
secure (see Definition 6).

For simplicity, we use the matrix distribution U3k,k(p) in our scheme in Figure 3.2, and prove
it secure under the Uk(p)-MDDH assumption (⇔ U3k,k(p)-MDDH assumption, by Lemma 2).
However, using a matrix distribution D3k,k(p) with more compact representation yields a more
efficient scheme, secure under the D3k,k(p)-MDDH assumption (see Remark 5).

Our construction

GenKEM(1λ):

G := (G, p, P)←R GGen(1λ); M←R U3k,k(p)
k1,0, . . . , kλ,1 ←R Z3k

p

pk :=
(
G, [M],

(
[M⊤kj,β]

)
1≤j≤λ,0≤β≤1

)

sk := (kj,β)1≤j≤λ,0≤β≤1

Return (pk, sk)

EncKEM(pk, τ):

r←R Zk
p; C := [r⊤M⊤]

kτ :=
∑λ

j=1 kj,τj

K := [r⊤ ·M⊤kτ]
Return (C, K) ∈ G1×3k ×G

DecKEM(pk, sk, τ, C):

kτ :=
∑λ

j=1 kj,τj

Return K := C · kτ

Figure 3.2: KEM, an IND-PCA-secure KEM under the Uk(p)-MDDH assumption, with tag-
space T = {0, 1}λ. Here, GGen is a prime-order group generator (see Section 2.2.1).

3.1 Multi-ciphertext PCA-secure KEM 51

Remark 5: On the use of the Uk(p)-MDDH assumption

In our scheme, we use a matrix distribution U3k,k(p) for the matrix M, therefore prov-
ing security under the U3k,k(p)-MDDH assumption ⇔ Uk(p)-MDDH assumption (see
Lemma 3). This is for simplicity of the presentation. However, for efficiency, one may
want to use an assumption with a more compact representation, such as the CI3k,k-MDDH
assumption [MRV16] with representation size 2k instead of 3k2 for U3k,k(p).

Perfect correctness. It follows readily from the fact that for all r ∈ Zk
p and C = r⊤M⊤, for

all k ∈ Z3k
p :

r⊤(M⊤k) = C · k.

Security proof

Theorem 7: IND-PCA security

The tag-based Key Encapsulation Mechanism KEM defined in Figure 3.2 is IND-PCA
secure if the Uk(p)-MDDH assumption holds in G. Namely, for any adversary A, there
exists an adversary B such that T(B) ≈ T(A) + (QDec + QEnc) · poly(λ) and

AdvIND-PCA
KEM,A (λ) ≤ (4λ + 1) · Adv

Uk(p)-mddh

G,B (λ) + (QDec + QEnc) · 2−Ω(λ),

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

game y uniform in: k′
τ used by EncO and DecO justification/remark

G0 Span(M) kτ actual scheme

G1 Z3k
q kτ U3k,k-MDDH on [M]

G2.i Z3k
q kτ + M

⊥
RFi(τ|i) G1 ≡ G2.0

G2.i.1 τi+1 = 0 : Span(M, M0)
kτ + M⊥RFi(τ|i)

U3k,k-MDDH on [M0]

τi+1 = 1 : Span(M, M1) U3k,k-MDDH on [M1]

G2.i.2 τi+1 = 0 : Span(M, M0)
kτ + M

∗
0RF

(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

Cramer-Shoup
τi+1 = 1 : Span(M, M1) argument

G2.i.3 τi+1 = 0 : Span(M, M0)
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M

∗
1RF

(1)
i+1(τ|i+1)

Cramer-Shoup
τi+1 = 1 : Span(M, M1) argument

G2.i+1 Z
3k
q kτ + M⊥RFi+1(τ|i+1) U3k,k-MDDH on [M0]

and [M1]

Figure 3.3: Sequence of games for the proof of Theorem 7. Throughout, we have (i) kτ :=
∑λ

j=1 kj,τj
;

(ii) EncO(τ) = ([y], Kb) where K0 = [y⊤k′
τ] and K1 ←R G; (iii) DecO(τ, [y], K̂) computes the encap-

sulation key K := [y⊤ · k′
τ]. Here, (M∗

0, M∗
1) is a basis for Span(M⊥), so that M⊤

1M∗
0 = M⊤

0M∗
1 = 0,

and we write M⊥RFi(τ|i) := M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i). The second column shows which set y is

uniformly picked from by EncO, the third column shows the value of k′
τ used by both EncO and DecO.

Proof of Theorem 7. We proceed via a series of hybrid games described in Figure 3.4 and 3.5
and for any game G, we use AdvG(A) to denote the advantage of A in game G. We also give a
high-level picture of the proof in Figure 3.3, summarizing the sequence of games.

52 Chapter 3. Tightly CCA-Secure Encryption without Pairings

G0,G1, G2.i :

TEnc = TDec := ∅; b←R {0, 1}
G ←R GGen(1λ); M←R U3k,k

M⊥ ←R U3k,2k s.t. M⊤M⊥ = 0
Pick random RFi : {0, 1}i → Z2k

p

k1,0, . . . , kλ,1 ←R Z3k
p

For all τ ∈ {0, 1}λ, kτ :=
∑λ

j=1 kj,τj

k′
τ := kτ + M⊥RFi(τ|i)

pk :=
(
G, [M],

(
[M⊤kj,β]

)
1≤j≤λ,0≤β≤1

)

b′ ← ADecO(·,·),EncO(·)(pk)
Return 1 if b = b′, 0 otherwise.

EncO(τ): G0, G1,G2.i

r←R Zk
p; y := Mr; y←R Z3k

p

K0 := [y⊤ · k′
τ]; K1 ←R G

If τ /∈ TDec ∪ TEnc, return (C := [y], Kb), and set
TEnc := TEnc ∪ {τ}.
Otherwise, return ⊥.

DecO(τ, C := [y], K̂): G0,G1,G2.i

K := [y⊤ · k′
τ]

Return

{
1 if K̂ = K ∧ τ /∈ TEnc

0 otherwise
TDec := TDec ∪ {τ}

Figure 3.4: Games for the proof of Theorem 7. In each procedure, the components inside a
solid (dotted) frame are only present in the games marked by a solid (dotted) frame.

• To go from game G0 to G1, we use the MDDH assumption to “tightly” switch the dis-
tribution of all the challenge ciphertexts. In Lemma 12, we build an adversary B0 such
that:

|AdvG0(A)− AdvG1(A)| ≤ Adv
Uk(p)-mddh

G,B0
(λ) +

1
p− 1

.

• In Lemma 13, we show that the game G1 and G2.0 are identically distributed.

• For all 0 ≤ i ≤ λ− 1, we build in Lemma 14 an adversary B2.i such that:

|AdvG2.i
(A)− AdvG2.i+1

(A)| ≤ 4 · Adv
Uk(p)-mddh

G,B2.i
(λ) +

4QDec + 2k

p
+

4
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO.

• In Lemma 19, we show that AdvG2.λ
(A) ≤ QEnc

p , using a statistical argument.

Putting everything together, we obtain an adversary B such that T(B) ≈ T(A) + (QDec +
QEnc) · poly(λ) and

AdvIND-PCA
KEM,A (λ) ≤ (4λ + 1) · Adv

Uk(p)-mddh

G,B (λ) + (QDec + QEnc) · 2−Ω(λ),

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Lemma 12: From game G0 to game G1

There exists an adversary B0 such that T(B0) ≈ T(A) + (QEnc + QDec) · poly(λ) and

|AdvG0(A)− AdvG1(A)| ≤ Adv
Uk(p)-mddh

G,B0
(λ) +

1
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

3.1 Multi-ciphertext PCA-secure KEM 53

Proof of Lemma 12. To go from G0 to G1, we switch the distribution of the vectors [y] sampled
by EncO, using the QEnc-fold U3k,k(p)-MDDH assumption on [M] (see Definition 12).

We build an adversary B′0 against the QEnc-fold U3k,k(p)-MDDH assumption, such that
T(B′0) ≈ T(A) + (QEnc + QDec) · poly(λ) with poly(λ) independent of T(A), and

|AdvG0(A)− AdvG1(A)| ≤ Adv
QEnc-Uk(p)-mddh

G,B′
0

(λ).

This implies the lemma by Corollary 1 (Uk(p)-MDDH ⇒ QEnc-fold U3k,k(p)-MDDH).
Upon receiving a challenge (G, [M] ∈ G3k×k, [H] := [h1| . . . |hQEnc

] ∈ G3k×QEnc) for the
QEnc-fold U3k,k(p)-MDDH assumption, B′0 picks b ←R {0, 1}, k1,0, . . . , kλ,1 ←R Z3k

p , generates
pk and simulates the oracle DecO as described in Figure 3.4. To simulate EncO on its j’th
query, for j = 1, . . . , QEnc, B′0 sets [y] := [hj], and computes Kb as described in Figure 3.4.

Lemma 13: From game G1 to game G2.0

For any adversary A, we have: |AdvG1(A)− AdvG2.0(A)| = 0.

Proof of Lemma 13. To go from G1 to G2.0, we change the distribution of k1,β ←R Z3k
p for

β = 0, 1, to k1,β + M⊥RF0(ε), where k1,β ←R Z3k
p , RF0(ε) ←R Z2k

p , and M⊥ ←R U3k,2k(p)
such that M⊤M⊥ = 0. Note that the extra term M⊥RF0(ε) does not appear in pk, since
M⊤(k1,β + M⊥RF0(ε)) = M⊤k1,β .

Lemma 14: From game G2.i to game G2.i+1

For all 0 ≤ i ≤ λ− 1, there exists an adversary B2.i such that T(B2.i) ≈ T(A) + (QEnc +
QDec) · poly(λ) and

|AdvG2.i
(A)− AdvG2.i+1

(A)| ≤ 4 · Adv
Uk(p)-mddh

G,B2.i
(λ) +

4QDec + 2k

p
+

4
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 14. To go from G2.i to G2.i+1, we introduce intermediate games G2.i.1, G2.i.2

and G2.i.3, defined in Figure 3.5.

• To go from game G2.i to game G2.i.1, we use the MDDH assumption to “tightly” switch the
distribution of all the challenge ciphertexts. We proceed in two steps, first, by changing
the distribution of all the ciphertexts with a tag τ such that τi+1 = 0, and then, for
those with a tag τ such that τi+1 = 1. We use the MDDH assumption with respect to an
independent matrix for each step. We build an adversary in B2.i.0 Lemma 15 such that:

|AdvG2.i
(A)− AdvG2.i.1

(A)| ≤ 2 · Adv
Uk(p)-mddh

G,B2.i.0
(λ) +

2
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively.

• To go from game G2.i.1 to game G2.i.2, we use a variant of the Cramer-Shoup information-
theoretic argument to move from RFi to RFi+1, thereby increasing the entropy of k′τ . For
the sake of readability, we proceed in two steps: in Lemma 16, we move from RFi to an
hybrid between RFi and RFi+1, and in Lemma 17, we move to RFi+1. In Lemma 16, we
show that:

|AdvG2.i.1
(A)− AdvG2.i.2

(A)| ≤ 2QDec + 2k

p
,

where QDec is the number of times A queries DecO.

54 Chapter 3. Tightly CCA-Secure Encryption without Pairings

• In Lemma 17, we show that

|AdvG2.i.2
(A)− AdvG2.i.3

(A)| ≤ 2QDec

p
,

where QDec is the number of times A queries DecO, using a statistical argument.

• The transition between G2.i.3 and game G2.i+1 is symmetric to the transition between
game G2.i and game G2.i.1 (cf. Lemma 15): we use the MDDH assumption to “tightly”
switch the distribution of all the challenge ciphertexts in two steps; first, by changing
the distribution of all the ciphertexts with a tag τ such that τi+1 = 0, and then, the
distribution of those with a tag τ such that τi+1 = 1, using the MDDH assumption
with respect to an independent matrix for each step. We build an adversary B2.i.3 in
Lemma 18 such that:

|AdvG2.i.3
(A)− AdvG2.i+1

(A)| ≤ 2 · Adv
Uk(p)-mddh

G,B2.i.3
(λ) +

2
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively.

Putting everything together, we obtain the lemma.

G2.i, G2.i.1, G2.i.2 , G2.i.3

TEnc = TDec := ∅; b←R {0, 1}
G ←R GGen(1λ); M←R U3k,k

M⊥ ←R U3k,2k s.t. M⊤M⊥ = 0

M0, M1 ←R U3k,k

M∗
0, M∗

1 ←R U3k,k s.t.
Span(M⊥) = Span(M∗

0, M∗
1)

M⊤M∗
0 = M⊤

1M∗
0 = 0 = M⊤M∗

1 = M⊤

0M∗
1

Pick random RFi : {0, 1}i → Z2k
p .

Pick random RF
(0)
i+1 : {0, 1}i+1 → Zk

p

and RF
(1)
i : {0, 1}i → Zk

p

Pick random RF
(0)
i+1, RF

(1)
i+1 : {0, 1}i+1 → Zk

p.

k1,0, . . . , kλ,1 ←R Z3k
p

For all τ ∈ {0, 1}λ, kτ :=
∑λ

j=1 kj,τj

k′
τ := kτ + M⊥RFi(τi)

k′
τ := kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

k′
τ := kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i+1(τ|i+1)

pk :=
(
G, [M],

(
[M⊤kj,β]

)
1≤j≤λ,0≤β≤1

)

b′ ← ADecO(·,·,·),EncO(·)(pk)
Return 1 if b′ = b, 0 otherwise.

EncO(τ): G2.i, G2.i.1, G2.i.2,G2.i.3

y←R Z3k
p

If τi+1 = 0 : r←R Zk
p; r0 ←R Zk

p; y := Mr + M0r0

If τi+1 = 1 : r←R Zk
p; r1 ←R Zk

p; y := Mr + M1r1

K0 := [y⊤ · k′
τ];

K1 ←R G

If τ /∈ TDec ∪ TEnc, return (C := [y], Kb) and set
TEnc := TEnc ∪ {τ}.
Otherwise, return ⊥.

DecO(τ, C := [y], K̂): G2.i,G2.i.1,G2.i.2,G2.i.3

K := [y⊤k′
τ]

Return

{
1 if K̂ = K ∧ τ /∈ TEnc

0 otherwise
TDec := TDec ∪ {τ}.

Figure 3.5: Games G2.i (for 0 ≤ i ≤ λ),G2.i.1, G2.i.2 and G2.i.3 (for 0 ≤ i ≤ λ− 1) for the proof
of Lemma 14. For all τ ∈ {0, 1}λ, we denote by τ|i the i-bit prefix of τ . In each procedure,
the components inside a solid (dotted, gray) frame are only present in the games marked by a
solid (dotted, gray) frame.

3.1 Multi-ciphertext PCA-secure KEM 55

Lemma 15: From game G2.i to game G2.i.1

For all 0 ≤ i ≤ λ−1, there exists an adversary B2.i.0 such that T(B2.i.0) ≈ T(A)+(QEnc +
QDec) · poly(λ) and

|AdvG2.i
(A)− AdvG2.i.1

(A)| ≤ 2 · Adv
Uk(p)-mddh

G,B2.i.0
(λ) +

2
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 15. To go from G2.i to G2.i.1, we switch the distribution of the vectors [y]
sampled by EncO, using the QEnc-fold U3k,k(p)-MDDH assumption.

We introduce an intermediate game G2.i.0 where EncO(τ) is computed as in G2.i.1 if τi+1 = 0,
and as in G2.i if τi+1 = 1. The public key pk, and the oracle DecO are as in G2.i.1. We build
adversaries B′2.i.0 and B′′2.i.0 such that T(B′2.i.0) ≈ T(B′′2.i.0) ≈ T(A) + (QEnc + QDec) · poly(λ)
with poly(λ) independent of T(A), and

Claim 1: |AdvG2.i
(A)− AdvG2.i.0

(A)| ≤ Adv
QEnc-U3k,k(p)-mddh

G,B′
2.i.0

(λ).

Claim 2: |AdvG2.i.0
(A)− AdvG2.i.1

(A)| ≤ Adv
QEnc-U3k,k(p)-mddh

G,B′′
2.i.0

(λ).

This implies the lemma by Corollary 1 (Uk(p)-MDDH ⇒ QEnc-fold U3k,k(p)-MDDH).
Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G3k×k, [H] := [h1| . . . |hQEnc

] ∈
G3k×QEnc) for the QEnc-fold U3k,k(p)-MDDH assumption with respect to M0 ←R U3k,k(p), B′2.i.0

does as follows:

pk: B′2.i.0 picks M←R U3k,k, k1,0, . . . , kλ,1 ←R Z3k
p , and computes pk as described in Figure 3.5.

For each τ queried to EncO or DecO, it computes on the fly RFi(τ|i) and k′τ := kτ +
M⊥RFi(τ|i), where kτ :=

∑λ
j=1 kj,τj , RFi : {0, 1}i → Z2k

p is a random function, and τ|i
denotes the i-bit prefix of τ (see Figure 3.5). Note that B′2.i.0 can compute efficiently M⊥

from M.

EncO: To simulate the oracle EncO(τ) on its j’th query, for j = 1, . . . , QEnc, B′2.i.0 computes
[y] as follows:

if τi+1 = 0 : r←R Zk
p; [y] := [Mr + hj]

if τi+1 = 1 : [y]←R G3k

This way, B′2.i.0 simulates EncO as in G2.i.0 when [hj] := [M0r0] with r0 ←R Zk
p, and as

in G2.i when [hj]←R G3k.

DecO: Finally, B′2.i.0 simulates DecO as described in Figure 3.5.

Therefore, |AdvG2.i
(A)− AdvG2.i.0

(A)| ≤ Adv
QEnc-U3k,k(p)-mddh

G,B′
2.i.0

(λ).

To prove Claim 2, we build an adversary B′′2.i.0 against the QEnc-fold U3k,k(p)-MDDH as-
sumption with respect to a matrix M1 ←R U3k,k(p), independent from M0, similarly than
B′2.i.0.

Lemma 16: From game G2.i.1 to game G2.i.2

56 Chapter 3. Tightly CCA-Secure Encryption without Pairings

For all 0 ≤ i ≤ λ− 1,

|AdvG2.i.1
(A)− AdvG2.i.2

(A)| ≤ 2QDec + 2k

p
,

where QDec is the number of times A queries DecO.

Proof of Lemma 16. In G2.i.2, we decompose Span(M⊥) into two subspaces Span(M∗
0) and

Span(M∗
1), and we increase the entropy of the components of k′τ which lie in Span(M∗

0). To
argue that G2.i.1 and G2.i.2 are statistically close, we use a Cramer-Shoup argument [CS03].

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability at
least 1− 2k

p , (M‖M0‖M1) forms a basis of Z3k
p . Therefore, we have Span(M⊥) = Ker(M⊤) =

Ker
(
(M‖M1)⊤

) ⊕ Ker
(
(M‖M0)⊤

)
. We pick uniformly M∗

0 and M∗
1 in Z3k×k

p that generate
Ker

(
(M‖M1)⊤

)
and Ker

(
(M‖M0)⊤

)
, respectively (see Figure 3). This way, for all τ ∈ {0, 1}λ,

we can write
M⊥RFi(τ|i) := M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF

(1)
i : {0, 1}i → Zk

p are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Zk

p as follows:

RF
(0)
i+1(τ|i+1) :=





RF
(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′

(0)
i (τ|i) if τi+1 = 1

where RF′
(0)
i : {0, 1}i → Zk

p is a random function independent from RF
(0)
i . This way, RF

(0)
i+1 is

a random function.
We show that the outputs of EncO and DecO are statistically close in G2.i.1 and G2.i.2. We

decompose the proof in two cases (delimited with �): the queries with a tag τ ∈ {0, 1}λ such
that τi+1 = 0, and the queries with a tag τ such that τi+1 = 1.

Queries with τi+1 = 0:

The only difference between G2.i.1 and G2.i.2 is that k′τ is computed using the random function
RF

(0)
i in G2.i.1, whereas it uses the random function RF

(0)
i+1 in G2.i.2 (see Figure 3.5). Therefore,

by definition of RF
(0)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 0, k′τ is the same in G2.i.1 and G2.i.2,

and the outputs of EncO and DecO are identically distributed. �

Queries with τi+1 = 1:

Observe that for all y ∈ Span(M, M1) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G2.i.2︷ ︸︸ ︷
y⊤
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF′
(0)
i (τ|i)

)

= y⊤
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y⊤M∗

0RF′
(0)
i (τ|i)

︸ ︷︷ ︸
=0

=

G2.i.1︷ ︸︸ ︷
y⊤ ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)

where the second equality uses the fact that M⊤M∗
0 = M⊤

1M∗
0 = 0 and thus y⊤M∗

0 = 0.
This means that:

• the output of EncO on any input τ such that τi+1 = 1 is identically distributed in G2.i.1

and G2.i.2;

3.1 Multi-ciphertext PCA-secure KEM 57

• the output of DecO on any input (τ, [y], K̂) where τi+1 = 1, and y ∈ Span(M, M1) is the
same in G2.i.1 and G2.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 =
1, and y /∈ Span(M, M1). We introduce intermediate games G2.i.1.j , and G′2.i.1.j for j =
0, . . . , QDec, defined as follows:

• G2.i.1.j : DecO is as in G2.i.1 except that for the first j times it is queried, it outputs 0 to
any ill-formed query. EncO is as in G2.i.2.

• G′2.i.1.j : DecO as in G2.i.2 except that for the first j times it is queried, it outputs 0 to
any ill-formed query. EncO is as in G2.i.2.

We show that:

G2.i.1 ≡ G2.i.1.0 ≈s G2.i.1.1 ≈s . . . ≈s G2.i.1.QDec
≡ G′

2.i.1.QDec
≈s G′

2.i.1.QDec−1 ≈s . . . ≈s G′
2.i.1.0 ≡ G2.i.2

where we denote statistical closeness with ≈s and statistical equality with ≡.
It suffices to show that for all j = 0, . . . , QDec − 1:

Claim 1: in G2.i.1.j , if the j +1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− 1/q (this implies G2.i.1.j ≈s G2.i.1.j+1, with statistical difference 1/q);

Claim 2: in G′2.i.1.j , if the j +1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− 1/q (this implies G′2.i.1.j ≈s G′2.i.1.j+1, with statistical difference 1/q)

where the probabilities are taken over the random coins used to generate pk.
Let us prove Claim 1.
Recall that in G2.i.1.j , on its j + 1-st query, DecO(τ, [y], K̂) computes K := [y⊤k′τ], where

k′τ :=
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
(see Figure 3.5). We prove that if (τ, [y], K̂) is ill-

formed, then K is completely hidden from A, up to its j + 1-st query to DecO. The reason
is that the vector ki+1,1 in sk contains some entropy that is hidden from A. This entropy is
“released" on the j + 1-st query to DecO if it is ill-formed. More formally, we use the fact that
the vector ki+1,1 ←R Z3k

p is identically distributed as ki+1,1 + M∗
0w, where ki+1,1 ←R Z3k

p , and
w←R Zk

p. We show that w is completely hidden from A, up to its j + 1-st query to DecO.

• The public key pk does not leak any information about w, since

M⊤(ki+1,1 + M∗
0w) = M⊤ki+1,1.

This is because M⊤M∗
0 = 0.

• The outputs of EncO also hide w.

– For τ such that τi+1 = 0, k′τ is independent of ki+1,1, and therefore, so does EncO(τ).

– For τ such that τi+1 = 1, and for any y ∈ Span(M, M1), we have:

y⊤(k′τ + M∗
0w) = y⊤k′τ (3.2)

since M⊤M∗
0 = M⊤

1M∗
0 = 0, which implies y⊤M∗

0 = 0.

• The first j outputs of DecO also hide w.

– For τ such that τi+1 = 0, k′τ is independent of ki+1,1, and therefore, so does
DecO([y], τ, K̂).

– For τ such that τi+1 = 1 and y ∈ Span(M, M1), the fact that DecO(τ, [y], K̂) is
independent of w follows readily from Equation (3.2).

58 Chapter 3. Tightly CCA-Secure Encryption without Pairings

– For τ such that τi+1 = 1 and y /∈ Span(M, M1), that is, for an ill-formed query,
DecO outputs 0, independently of w, by definition of G2.i.1.j .

This proves that w is uniformly random from A’s viewpoint.
Finally, because the j + 1-st query (τ, [y], K̂) is ill-formed, we have τi+1 = 1, and y /∈

Span(M, M1), which implies that y⊤M∗
0 6= 0. Therefore, the value

K = [y⊤(k′τ + M∗
0w)] = [y⊤k′τ + y⊤M∗

0︸ ︷︷ ︸
6=0

w]

computed by DecO is uniformly random over G from A’s viewpoint. Thus, with probability
1− 1/q over K ←R G, we have K̂ 6= K, and DecO(τ, [y], K̂) = 0.

We prove Claim 2 similarly, arguing than in G′2.i.1.j , the value K := [y⊤k′τ], where k′τ :=
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
, computed by DecO(τ, [y], K̂) on its j + 1-st query, is

completely hidden from A, up to its j + 1-st query to DecO, if (τ, [y], K̂) is ill-formed. The
argument goes exactly as for Claim 1. �

Lemma 17: From game G2.i.2 to game G2.i.3

For all 0 ≤ i ≤ λ− 1,

|AdvG2.i.2
(A)− AdvG2.i.3

(A)| ≤ 2QDec

p
,

where QDec is the number of times A queries DecO.

Proof of Lemma 17. In G2.i.3, we use the same decomposition Span(M⊥) = Span(M∗
0, M∗

1) as
that in G2.i.2. The entropy of the components of k′τ that lie in Span(M∗

1) increases from G2.i.2 to
G2.i.3. To argue that these two games are statistically close, we use a Cramer-Shoup argument
[CS03], exactly as for Lemma 16.

We define RF
(1)
i+1{0, 1}i+1 → Zk

p as follows:

RF
(1)
i+1(τ|i+1) :=





RF
(1)
i (τ|i) + RF′

(1)
i (τ|i) if τi+1 = 0

RF
(1)
i (τ|i) if τi+1 = 1

where RF′
(1)
i : {0, 1}i → Zk

p is a random function independent from RF
(1)
i . This way, RF

(1)
i+1 is

a random function.
We show that the outputs of EncO and DecO are statistically close in G2.i.1 and G2.i.2. We

decompose the proof in two cases (delimited with �): the queries with a tag τ ∈ {0, 1}λ such
that τi+1 = 0, and the queries with tag τ such that τi+1 = 1.

Queries with τi+1 = 1:

The only difference between G2.i.2 and G2.i.3 is that k′τ is computed using the random function
RF

(1)
i in G2.i.2, whereas it uses the random function RF

(1)
i+1 in G2.i.3 (see Figure 3.5). Therefore,

by definition of RF
(1)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 1, k′τ is the same in G2.i.2 and G2.i.3,

and the outputs of EncO and DecO are identically distributed. �

3.1 Multi-ciphertext PCA-secure KEM 59

Queries with τi+1 = 0:

Observe that for all y ∈ Span(M, M0) and all τ ∈ {0, 1}λ such that τi+1 = 0,

G2.i.3︷ ︸︸ ︷
y⊤
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i) + M∗

1RF′
(1)
i (τ|i)

)

= y⊤
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
+ y⊤M∗

1RF′
(1)
i (τ|i)

︸ ︷︷ ︸
=0

=

G2.i.2︷ ︸︸ ︷
y⊤ ·

(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)

where the second equality uses the fact M⊤M∗
1 = M⊤

0M∗
1 = 0, which implies y⊤M∗

1 = 0.
This means that:

• the output of EncO on any input τ such that τi+1 = 0 is identically distributed in G2.i.2

and G2.i.3;

• the output of DecO on any input (τ, [y], K̂) where τi+1 = 0, and y ∈ Span(M, M0) is the
same in G2.i.2 and G2.i.3.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 = 0,
and y /∈ Span(M, M0). The rest of the proof goes similarly than the proof of Lemma 16. See
the latter for further details. �

Lemma 18: From game G2.i.3 to game G2.i+1

For all 0 ≤ i ≤ λ−1, there exists an adversary B2.i.3 such that T(B2.i.3) ≈ T(A)+(QEnc +
QDec) · poly(λ) and

|AdvG2.i.3
(A)− AdvG2.i+1

(A)| ≤ 2 · Adv
Uk(p)-mddh

G,B2.i.3
(λ) +

2
p− 1

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 18. First, we use the fact that for all τ ∈ {0, 1}λ, the vector M∗
0RF

(0)
i+1(τ|i+1)+

M∗
1RF

(1)
i+1(τ|i+1) is identically distributed to M⊥RFi+1(τ|i+1), where RFi+1 : {0, 1}i+1 → Z2k

p is
a random function. This is because (M∗

0, M∗
1) is a basis of Span(M⊥). That meansA’s view can

be simulated only knowing M⊥, and not M∗
0, M∗

1 explicitly. Then, to go from G2.i.3 to G2.i+1,
we switch the distribution of the vectors [y] sampled by EncO, using the QEnc-fold U3k,k(p)-
MDDH assumption (which is equivalent to the Uk(p)-MDDH assumption, see Lemma 2) twice:
first with respect to a matrix M0 ←R U3k,k(p) for ciphertexts with τi+1 = 0, then with respect
to an independent matrix M1 ←R U3k,k(p) for ciphertexts with τi+1 = 1 (see the proof of
Lemma 15 for further details).

Lemma 19: Game G2.λ

For any PPT adversary A, we have: AdvG2.λ
(A) ≤ QEnc

p .

60 Chapter 3. Tightly CCA-Secure Encryption without Pairings

Proof of Lemma 19. We show that the joint distribution of all the values K0 computed by
EncO is statistically close to uniform over GQEnc . Recall that on input τ , EncO(τ) computes

K0 := [y⊤(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z2k
p is a random function, and y←R Z3k

p (see Figure 3.4).
We make use of the following properties:

Property 1: all the tags τ queried to EncO, such that EncO(τ) 6= ⊥, are distinct.

Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ TEnc}. This is because for
all queries (τ, [y], K̂) to DecO such that τ ∈ TEnc, DecO(τ, [y], K̂) = 0, independently of
RFλ(τ), by definition of G2.λ.

Property 3: with probability at least 1− QEnc

p over the random coins of EncO, all the vectors
y sampled by EncO are such that y⊤M⊥ 6= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by EncO is uni-
formly random over

(
Z2k

p

)QEnc (from Property 1), independent of the outputs of DecO (from
Property 2). Finally, from Property 3, we get that the joint distribution of all the values K0

computed by EncO is statistically close to uniform over GQEnc , since:

K0 := [y⊤(kτ + M⊥RFλ(τ)) = [y⊤kτ + y⊤M⊥

︸ ︷︷ ︸
6=0 w.h.p.

RFλ(τ)].

This means that the values K0 and K1 are statistically close, and therefore, AdvG3(A) ≤ QEnc

p .

Multi-ciphertext CCA-secure Public Key Encryption scheme

Our construction

We now describe the optimized IND-CCA-secure PKE scheme. Compared to the PCA-secure
KEM from Section 3.1, we add an authenticated (symmetric) encryption scheme (EncAE, DecAE),
and set the KEM tag τ as the hash value of a suitable part of the KEM ciphertext (as explained
in the introduction). A formal definition with highlighted differences to our PCA-secure KEM
appears in Figure 3.6. We prove the security under the Uk(p)-MDDH assumption.

Perfect correctness. It follows from the perfect correctness of AE and the fact that for all
r ∈ Zk

p and y = Mr, for all k ∈ Z3k
p :

r⊤(M⊤k) = y⊤ · k.

3.2 Multi-ciphertext CCA-secure Public Key Encryption scheme 61

GenPKE(1λ):

G ←R GGen(1λ); H←R H(1λ) ; M←R U3k,k

k1,0, . . . , kλ,1 ←R Z3k
q

pk :=
(
G, [M], H ,

(
[M⊤kj,β]

)
1≤j≤λ,0≤β≤1

)

sk := (kj,β)1≤j≤λ,0≤β≤1

Return (pk, sk)

EncPKE(pk, m):

r←R Zk
q ; y := Mr

τ := H([y])

kτ :=
∑λ

j=1 kj,τj

K := [r⊤ ·M⊤kτ]
φ := EncAE(K, m)

Return ([y], φ)

DecPKE(pk, sk, ([y], φ)):

τ := H([y]) ; kτ :=
∑λ

j=1 kj,τj
;

K := [y⊤kτ]
Return DecAE(K, φ) .

Figure 3.6: PKE , an IND-CCA-secure PKE. We color in gray the differences with KEM,
the IND-PCA-secure KEM in Figure 3.2. Here, GGen is a prime-order group generator (see
Section 2.2.1) , and AE := (EncAE, DecAE) is an Authenticated Encryption scheme with key-
space K := G (see Definition 3).

62 Chapter 3. Tightly CCA-Secure Encryption without Pairings

Security proof of PKE

Theorem 8: IND-CCA security

The Public Key Encryption scheme PKE defined in Figure 3.6 is IND-CCA secure, if
the Uk(p)-MDDH assumption holds in G, AE has one-time privacy and authenticity, and
H generates collision resistant hash functions. Namely, for any adversary A, there exist
adversaries B, B′, B′′ such that T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A) + (QDec + QEnc) · poly(λ)
and

AdvIND-CCA
PKE,A (λ) ≤ (4λ + 1) · Adv

Uk(p)-mddh

G,B (λ)

+ (QEncQDec + (4λ + 2)QDec + QEnc) · Advae-ot
AE,B′′(λ)

+ AdvCR
H,B′(λ) + QEnc(QEnc + QDec) · 2−Ω(λ),

(3.3)

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

We note that the QEnc and QDec factors in (3.4) are only related to AE . Hence, when
using a statistically secure authenticated encryption scheme, the corresponding terms in (3.4)
become exponentially small.

Remark 6: Extension to the multi-user CCA security

We only provide an analysis in the multi-ciphertext (but single-user) setting. However, we
remark (without proof) that our analysis generalizes to the multi-user, multi-ciphertext
scenario, similar to [BBM00, HJ12, HKS15]. Indeed, all computational steps (not counting
the steps related to the AE scheme) modify all ciphertexts simultaneously, relying for this
on the re-randomizability of the Uk(p)-MDDH assumption relative to a fixed matrix M.
The same modifications can be made to many PKE simultaneously by using that the
Uk(p)-MDDH Assumption is also re-randomizable across many matrices Mi. (A similar
property for the DDH, DLIN, and bilinear DDH assumptions is used in [BBM00], [HJ12],
and [HKS15], respectively.)

Proof of Theorem 8. We proceed via a series of hybrid games described in Figures 3.7 and 3.8.
Let A be a PPT adversary. For any game G, we use AdvG(A) to denote the advantage of A in
game Gi.

• We transition from game G0 to game G1 using the collision resistance of H and the one-
time authenticity of AE to restrict the oracles DecO and EncO, as described in Figure 3.7.
In Lemma 51, we build adversaries B0 and B′0 such that:

|AdvG0(A)− AdvG1(A)| = 2QDec · Advae-ot
AE,B0

(λ) + AdvCR
H,B′

0
(λ) +

QEnc(QEnc + QDec)
pk

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and
poly(λ) is independent of T(A).

• To go from game G1 to G2, we use the MDDH assumption to “tightly” switch the dis-
tribution of all the challenge ciphertexts. Similarly than in Lemma 12, we obtain an
adversary B1 such that:

|AdvG1(A)− AdvG2(A)| ≤ Adv
Uk(p)-mddh

G,B1
(λ) +

1
p− 1

.

3.3 Security proof of PKE 63

G0, G1,G2, G3.i,G4 :

CEnc := ∅; b←R {0, 1}
TEnc = TDec := ∅
G ←R GGen(1λ); H ←R H(1λ);
M←R U3k,k(p);

M⊥ ←R U3k,2k(p) s.t. M⊤M⊥ = 0
Pick random RFi : {0, 1}i → Z2k

p

k1,0, . . . , kλ,1 ←R Z3k
p

For τ ∈ {0, 1}λ, write kτ :=
∑λ

j=1 kj,τj

k′
τ := kτ + M⊥RFi(τ|i)

pk :=
(
G, [M], H,

(
[M⊤kj,β]

)
1≤j≤λ,0≤β≤1

)

b′ ← ADecO(·,·,·),EncO(·)(pk)
Return 1 if b′ = b, 0 otherwise.

EncO(m0, m1): G0 , G1, G2,G3.i,G4

r←R Zk
p; y := Mr; y←R Z3k

p ;

τ := H([y]); K := [y⊤ · k′
τ]

φ0 := EncAE(K, m0); φ1 := EncAE(K, m1)

Return ([y], φb) and set CEnc := CEnc ∪ {([y], φb)}.

If τ /∈ TEnc ∪ TDec, set TEnc := TEnc ∪ {τ}, and
CEnc := CEnc ∪ {([y], φb)} and return ([y], φb).
Otherwise, return ⊥.

DecO([y], φ): G0 , G1,G2,G3.i , G4

τ := H([y]); K := [y⊤ · k′
τ]

If ([y], φ) ∈ CEnc, return ⊥;
otherwise, return DecAE(K, φ).

Set TDec := TDec ∪ {τ}.
If ([y], φ) ∈ CEnc or ∃([y′], φ′) ∈ CEnc

with H([y′]) = H([y]) and y′ 6= y, return ⊥;
otherwise, return DecAE(K, φ).

Set TDec := TDec ∪ {τ}.
If τ /∈ TEnc, return DecAE(K, φ); else, return ⊥.

Figure 3.7: Games for the proof of Theorem 8. In each procedure, the components inside
a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray)
frame.

• The game G2 and G3.0 are identically distributed. The argument is exactly as in Lemma 13,
thus omitted.

• We build in Lemma 21 adversaries B3.i and B′3.i such that:

|AdvG3.i
(A)− AdvG3.i+1

(A)| ≤ 4 · Adv
Uk(p)-mddh

G,B3.i
(λ) + 4QDec · Advae-ot

AE,B′
3.i

(λ) +
4

p− 1
+

2k

p
,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively.

• To go from game G3.λ to G4, we use the one-time authenticity of AE to restrict the
decryption oracle DecO. Namely, in Lemma 26, we build an adversary B3.λ such that:

|AdvG3.λ
(A)− AdvG4(A)| ≤ QDecQEnc · Advae-ot

AE,B3.λ
(λ) +

QDec

p
,

where QEnc, QDec are the number of queries to EncO and DecO, respectively.

• We show in Lemma 27 that there exists an adversary B4 such that:

AdvG4(A) ≤ QEnc · Advae-ot
AE,B4

(λ) +
QEnc

p
,

where QEnc denotes the number queries to EncO.

64 Chapter 3. Tightly CCA-Secure Encryption without Pairings

Putting everything together, we obtain adversaries B, B′, B′′ such that T(B) ≈ T(B′) ≈
T(B′′) ≈ T(A) + (QDec + QEnc) · poly(λ) and

AdvIND-CCA
PKE,A (λ) ≤ (4λ + 1) · Adv

Uk(p)-mddh

G,B (λ)

+ (QEncQDec + (4λ + 2)QDec + QEnc) · Advae-ot
AE,B′′(λ)

+ AdvCR
H,B′(λ) + QEnc(QEnc + QDec) · 2−Ω(λ),

(3.4)

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Lemma 20: From game G0 to game G1

There exist adversaries B0 and B′0 such that T(B0) ≈ T(B′0) ≈ T(A) + (QEnc + QDec) ·
poly(λ) and

|AdvG0(A)− AdvG1(A)| = 2QDec · Advae-ot
AE,B0

(λ) + AdvCR
H,B′

0
(λ) +

QEnc(QEnc + QDec)
pk

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 20. First, we use the one-time authenticity of AE to argue that if A queries
DecO on a vector [y] such that y /∈ Span(M), then, DecO outputs ⊥, with all but negligible
probability. Second, we use the collision resistance of H to argue that:
(i) if A queries DecO on ([y′], φ′), where for some previous output ([y], φ) of EncO, we have:
H([y]) = H([y′]) and y′ 6= y, then, with all but negligible probability, DecO outputs ⊥;
(ii) every time EncO outputs a vector [y], its tag H([y]) is fresh (no [y′] with the same tag has
been output by EncO or queried to DecO before), with overwhelming probability over EncO’s
random coins.

We introduce intermediate games G0.j (resp. G1.j) for j = 0, . . . , QDec, defined as follows:
DecO is as in G0 (resp. G1) except that for the first j times it is queried, it outputs ⊥ to any
query ([y], φ) such that y /∈ Span(M). The public key and EncO are as in G0 (resp. G1).

We show that:

G0 ≡ G0.0 ≈AE G0.1 ≈AE . . . ≈AE G0.QDec
≈CR G1.QDec

≈AE . . . ≈AE G1.0 ≡ G1

where ≡ denotes statistical equality, ≈AE denotes indistinguishability based on the security of
AE , and ≈CR denotes indistinguishability based on the collision resistance of H.

Namely, we build adversaries B0.j , B1.j for j = 0, . . . , QDec− 1, and B′0 such that T(B0,j) ≈
T(B1,j) ≈ T(B′0) ≈ T(A) + (QEnc + QDec) · poly(λ), where poly(λ) is independent of T(A), and
such that

Claim 1: |AdvG0.j
(A)−AdvG0.j+1

(A)| ≤ Advae-ot
AE,B0.j

(λ) and |Adv1.j−Adv1.j+1| ≤ Advae-ot
AE,B0.j

(λ),
for j = 0, . . . , QDec − 1.

Claim 2: |Adv0.QDec
− Adv1.QDec

| ≤ AdvCR
H,B′

0
(λ).

This implies the lemma.
Let us prove Claim 1. It suffices to show that in G0.j and G1.j , with all but negligible

probability, DecO outputs ⊥ to its j + 1-st query if it contains [y] such that y /∈ Span(M).
Recall that in both G0.j and G1.j , on its j + 1-st query ([y], φ), DecO computes

K := [y⊤ · kτ], where τ = H([y]) and kτ :=
λ∑

ρ=1

kρ,τρ ,

3.3 Security proof of PKE 65

and returns DecAE(K, φ) (or ⊥, see Figure 3.7). We prove that this value K is hidden from A
up to its j + 1-st query to DecO. Then, we use the one-time authenticity of AE to argue that
DecAE(K, φ) = ⊥ with overwhelming probability.

To prove K is hidden from A, we show that the vectors k1,0, k1,1 in sk contain some
entropy that is hidden from A. More formally, we use the fact that the vectors k1,β ←R Z3k

p

are identically distributed than k1,β + M⊥w for β = 0, 1, where k1,β ←R Z3k
p , w ←R Zk

p, and
M⊥ ←R U3k,2k such that M⊤M⊥ = 0. We show that w is hidden from A, up to its j + 1-st
query to DecO.

• The public key pk does not leak any information about w, since

M⊤(k1,β + M⊥w) = M⊤k1,β .

This is because M⊤M⊥ = 0.

• The outputs of EncO also hide w, since for any y ∈ Span(M), we have:

y⊤(kτ + M⊥w) = y⊤k′τ (3.5)

since M⊤M⊥ = 0 which implies y⊤M⊥ = 0.

• The first j outputs of DecO also hide w.

– For y ∈ Span(M), DecO([y], φ) is independent of w, from Equation (3.5).

– For y /∈ Span(M), DecO([y], φ) = ⊥, independently of w, by definition of G0.j .

Therefore, the value
K = [y⊤(kτ + M⊥w)] = [y⊤kτ + y⊤M⊥

︸ ︷︷ ︸
6=0

w]

computed by DecO on its j + 1-st query, is uniformly random over G from A’s view, since
y /∈ Span(M)⇔ y⊤M⊥ 6= 0.

Then, by one-time authenticity of AE , there exists an adversary B0.j such that T(B0,j) ≈
T(A) + (QEnc + QDec) · poly(λ), where poly(λ) is independent of T(A), and

|AdvG0.j
(A)− AdvG0.j+1

(A)| ≤ Advae-ot
AE,B0.j

(λ).

Let us prove Claim 2. It suffices to show that in G0.QDec
:

(i) if DecO is queried on ([y], φ), and there exists ([y′], φ′) output previously by EncO, with
H([y]) = H([y′]) and y′ 6= y, then, with all but negligible probability, DecO outputs ⊥;
(ii) every time EncO outputs a vector [y], its tag H([y]) is fresh (no [y′] with the same tag
has been output by EncO or queried to DecO before), with overwhelming probability over its
random coins.

We define B′0 as follows. Upon receiving a challenge H←R H(1λ) for the collision resistance
of H, B′0 picks b ←R {0, 1}, k1,0, . . . , kλ,1 ←R Z3k

p , and generates the public key pk, simulates
the oracle EncO and DecO as in G0.QDec

.
(i) Suppose B′0 receives some [y] through a DecO query, such that there is a [y′] from an

earlier EncO query with H([y]) = H([y′]), and y 6= y′. Then, we distinguish the following cases:

Case 1: y 6= y′. Then there is a collision H([y]) = H([y′]) that B′0 can directly output.

Case 2: y = y′ (but y 6= y′). Then, y /∈ Span(M) (because y 6= y′), and DecO outputs ⊥, as
would happen both in G0.QDec

and G1.QDec
.

66 Chapter 3. Tightly CCA-Secure Encryption without Pairings

(ii) First, note that with probability at least 1− QEnc(QEnc+QDec)
pk over its random coins, EncO

samples vectors [y] whose upper parts [y] are fresh (they are distinct from those previously
sampled by EncO, or queried to DecO). Therefore, conditioned on this fact, if B′0 samples
τ := H([y]) that is not fresh, i.e there exists a pair ([y′], H([y′]) = τ) previously output by EncO

or queried to DecO (along with some symmetric ciphertext φ), then we have H([y]) = H([y′]),
and [y] 6= [y′], that is, B′0 finds a collision.

Summarizing, both games G0.QDec
and G1.QDec

proceed identically (as simulated by B′0),
unless (i) Case 1 occurs, or (ii) EncO samples a tag that was output or queried before, in which
case B′0 finds a collision, with overwhelming probability over its random coins.

Lemma 21: From game G3.i to game G3.i+1

For all 0 ≤ i ≤ λ− 1, there exist adversaries B3.i and B′3.i such that T(B3.i) ≈ T(B′3.i) ≈
T(A) + (QEnc + QDec) · poly(λ) and

|AdvG3.i
(A)− AdvG3.i+1

(A)| ≤ 4 · Adv
Uk(p)-mddh

G,B3.i
(λ) + 4QDec · Advae-ot

AE,B′
3.i

(λ) +
4

p− 1
+

2k

p
,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 21. To go from G3.i to G3.i+1, we introduce intermediate games G3.i.1, G3.i.2

and G3.i.3, defined in Figure 3.5.

• To go from game G3.i to game G3.i.1, we use the MDDH Assumption to “tightly” switch
the distribution of all the challenge ciphertexts, as in Lemma 15 in Section 3.1. We
proceed in two steps, first, by changing the distribution of all the ciphertexts with a tag
τ such that τi+1 = 0, and then, for those with a tag τ such that τi+1 = 1. We use the
MDDH Assumption with respect to an independent matrix for each step. We build an
adversary B3.i.0 in Lemma 22 such that:

|AdvG3.i
(A)− AdvG3.i.1

(A)| ≤ 2 · Adv
Uk(p)-mddh

G,B3.i.0
(λ) +

2
p− 1

.

• To go from game G3.i.1 to game G3.i.2, we use a computational variant of the Cramer-
Shoup information-theoretic argument to move from RFi to RFi+1, thereby increasing the
entropy of k′τ , as in Lemma 16, in Section 3.1. For the sake of readability, we proceed in
two steps: in Lemma 23, we move from RFi to an hybrid between RFi and RFi+1, and in
Lemma 24, we move to RFi+1. Overall, we build in Lemma 23 an adversary B3.i.1 such
that:

|AdvG3.i.1
(A)− AdvG3.i.2

(A)| ≤ 2QDec · Advae-ot
AE,B3.i.1

(λ) +
2k

p
,

where QDec denotes the number of queries to DecO.

• In Lemma 24, we build an adversary B3.i.2 such that:

|AdvG3.i.2
(A)− Adv3.i.3| ≤ 2QDec · Advae-ot

AE,B3.i.2
(λ),

where QDec denotes the number of queries to DecO.

• The transition between G3.i.3 and game G3.i+1 is symmetric to the transition between
G3.i and G3.i.1 (cf. Lemma 22): we use the MDDH Assumption to “tightly” switch the
distribution of all the challenge ciphertexts in two steps; first, by changing the distribution

3.3 Security proof of PKE 67

G3.i, G3.i.1, G3.i.2 , G3.i.3 :

CEnc := ∅; b←R {0, 1}
G := (G, p, P) ←R GGen(1λ); H ←R H(1λ);
M←R U3k,k(p)
M⊥ ←R U3k,2k s.t. M⊤M⊥ = 0

M0, M1 ←R U2k,k

M∗
0, M∗

1 ←R U3k,k s.t.
Span(M⊥) = Span(M∗

0, M∗
1)

M⊤M∗
0 =

(
0

M1

)⊤
M∗

0 = 0

M⊤M∗
1 =

(
0

M0

)⊤
M∗

1 = 0

Pick random RFi : {0, 1}i → Z2k
q .

Pick random RF
(0)
i+1 : {0, 1}i+1 → Zk

q

and RF
(1)
i : {0, 1}i → Zk

q

Pick random RF
(0)
i+1, RF

(1)
i+1 : {0, 1}i+1 → Zk

q .

k1,0, . . . , kλ,1 ←R Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ

j=1 kj,τj

k′
τ := kτ + M⊥RFi(τ|i)

k′
τ := kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

k′
τ := kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i+1(τ|i+1)

Return pk :=
(
G, [M], H,

(
[M⊤kj,β]

)
1≤j≤λ,0≤β≤1

)

EncO(m0, m1): G3.i, G3.i.1, G3.i.2,G3.i.3

r←R Zk
q ; y := Mr; τ := H([y]); y←R Z2k

q

If τi+1 = 0 : r0 ←R Zk
q ; y := Mr + M0r0

If τi+1 = 1 : r1 ←R Zk
q ; y := Mr + M1r1

K := [y⊤ · k′
τ]

φ0 := EncAE(K, m0); φ1 := EncAE(K, m1)
If τ /∈ TEnc ∪ TDec, return ([y], φb), set
TEnc := TEnc ∪ {τ}
and CEnc := CEnc ∪ {([y], φb)}. Otherwise, return
⊥.

DecO([y], φ): G3.i,G3.i.1,G3.i.2,G3.i.3

τ := H(y); K := [y⊤k′
τ]

If ([y], φ) ∈ CEnc or ∃([y′], φ′) ∈ CEnc with
H([y′]) = H([y]) and y′ 6= y, return ⊥; otherwise,
return DecAE(K, φ). Set TDec := TDec ∪ {τ}.

Figure 3.8: Games G3.i (for 0 ≤ i ≤ λ),G3.i.1, G3.i.2 and G3.i.3 (for 0 ≤ i ≤ λ − 1) for the proof of
Lemma 21. For all τ ∈ {0, 1}λ, we denote by τ|i the i-bit prefix of τ . In each procedure, the components
inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray) frame.

of all the ciphertexts with a tag τ such that τi+1 = 0, and then, the distribution of
those with a tag τ such that τi+1 = 1, using the MDDH assumption with respect to an
independent matrix for each step. In Lemma 24, we build an adversary B3.i.3 such that:

|AdvG3.i.2
(A)− Adv3.i.3| ≤≤ 2 · Adv

Uk(p)-mddh

G,B3.i.3
(λ) +

2
p− 1

.

Putting everything together, we obtain the lemma.

Lemma 22: From game G3.i to game G3.i.1

For all 0 ≤ i ≤ λ−1, there exists an adversary B3.i.0 such that T(B3.i.0) ≈ T(A)+(QEnc +
QDec) · poly(λ) and

|AdvG3.i
(A)− AdvG3.i.1

(A)| ≤ 2 · Adv
Uk(p)-mddh

G,B3.i.0
(λ) +

2
p− 1

,

where poly(λ) is independent of T(A).

Proof of Lemma 22. The proof of this lemma is essentially as the proof of Lemma 15, in
Section 3.1. The difference is that now, only the lower part of the vectors [y] sampled by EncO

68 Chapter 3. Tightly CCA-Secure Encryption without Pairings

is randomized using the QEnc-fold U2k,k-MDDH Assumption. The upper part of [y] is used to
compute the tag τ . We call y and y the upper and lower part of y, respectively.

We introduce an intermediate game G3.i.0 where EncO first picks r ←R Zk
p, computes

[y] := [Mr], τ := H([y]), and computes the rest of its output as in G3.i.1 if τi+1 = 0, and as in
G3.i if τi+1 = 1; the public key pk and DecO are as in G3.i.1. We build adversaries B′3.i.0 and
B′′3.i.0 such that T(B′3.i.0) ≈ T(B′′3.i.0) ≈ T(A)+(QEnc +QDec) ·poly(λ) with poly(λ) independent
of T(A), and

Claim 1: |AdvG3.i
(A)− AdvG3.i.0

(A)| ≤ Adv
QEnc-U2k,k-mddh

G,B′
3.i.0

(λ).

Claim 2: |AdvG3.i.0
(A)− AdvG3.i.1

(A)| ≤ Adv
QEnc-U2k,k-mddh

G,B′′
3.i.0

(λ).

This implies the lemma by Corollary 1 (Uk(p)-MDDH ⇒ QEnc-fold U2k,k(p)-MDDH).
Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G2k×k, [H] := [h1| . . . |hQEnc

] ∈
G2k×QEnc) for the QEnc-fold U2k,k-MDDH Assumption with respect to M0 ←R U2k,k, B′3.i.0 does
as follows:

pk: B′3.i.0 picks M←R U3k,k, k1,0, . . . , kλ,1 ←R Z3k
p , H←R H(1λ), and computes pk as described

in Figure 3.8. For each τ computed while simulating EncO or DecO, B′3.i.0 computes on
the fly RFi(τ|i), k′τ := kτ + M⊥RFi(τ|i), where RFi : {0, 1}i → Z2k

p is a random function,
kτ :=

∑λ
j=1 kj,τj , and τ|i denotes the i-bit prefix of τ (see Figure 3.8). Note that B′3.i.0

can compute efficiently M⊥ from M.

EncO(m0, m1): on the j’th query, for j = 1, . . . , QEnc, B′3.i.0 samples r← Zk
p, computes [y] :=

[Mr], τ := H([y]), and computes [y] as follows:

if τi+1 = 0 : [y] := [Mr + hj]
if τi+1 = 1 : [y]←R G2k

This way, B′3.i.0 simulates EncO as in G3.i.0 when [hj] := [M0r0] with r0 ←R Zk
p, and as

in G3.i when [hj]←R G2k.

DecO(C, φ): Finally, B′3.i.0 simulates DecO as described in Figure 3.8.

Therefore, |AdvG3.i
(A)− AdvG3.i.0

(A)| ≤ Adv
QEnc-U2k,k(p)-mddh

G,B′
3.i.0

(λ).

To prove Claim 2, we build an adversary B′′3.i.0 against the QEnc-fold U2k,k(p)-MDDH
assumption with respect to a matrix M1 ←R U2k,k, independent from M0, similarly than
B′3.i.0.

Lemma 23: From game G3.i.1 to game G3.i.2

For all 0 ≤ i ≤ λ−1, there exists an adversary B3.i.1 such that T(B3.i.1) ≈ T(A)+(QEnc +
QDec) · poly(λ), and

|AdvG3.i.1
(A)− AdvG3.i.2

(A)| ≤ 2QDec · Advae-ot
AE,B3.i.1

(λ) +
2k

p

where QEnc, QDec are the number of queries to EncO and DecO, respectively, and poly(λ)
is independent of T(A).

3.3 Security proof of PKE 69

Proof of Lemma 23. In G3.i.2, we decompose Span(M⊥) into two spaces Span(M∗
0) and Span(M∗

1),
and we increase the entropy of the vector k′τ computed by EncO and DecO. More precisely, the
entropy of the components of k′τ that lie in Span(M∗

0) increases from G3.i.1 to G3.i.2. To argue
that these two games are computationally indistinguishable, we use a Cramer-Shoup argument
[CS03], together with the one-time authenticity of AE .

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability
1 − 2k

p , (M‖(0
M0

)‖(0
M1

)
) forms a basis of Z3k

p . Therefore, we have Span(M⊥) = Ker(M⊤) =

Ker
(
(M‖(0

M1

)
)⊤
)⊕ Ker

(
(M‖(0

M0

)
)⊤
)
.

We pick uniformly M∗
0 and M∗

1 in Z3k×k
p that generates Ker

(
(M‖(0

M1

)
)⊤
)

and Ker
(
(M‖(0

M0

)
)⊤
)
,

respectively. This way, for all τ ∈ {0, 1}λ, we can write

M⊥RFi(τ|i) := M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF

(1)
i : {0, 1}i → Zk

p are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Zk

p as follows:

RF
(0)
i+1(τ|i+1) :=





RF
(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′

(0)
i (τ|i) if τi+1 = 1

where RF′
(0)
i : {0, 1}i → Zk

p is a random function independent from RF
(0)
i . This way, RF

(0)
i+1 is

a random function.
We show that the outputs of EncO and DecO are computationally indistinguishable in G3.i.1

and G3.i.2. We decompose the proof in two cases (delimited with �): the queries corresponding
to a tag τ ∈ {0, 1}λ such that τi+1 = 0, and the queries corresponding to a tag τ such that
τi+1 = 1.

Queries with τi+1 = 0:

The only difference between G3.i.1 and G3.i.2 is that k′τ is computed using the random function
RF

(0)
i in G3.i.1, whereas it uses the random function RF

(0)
i+1 in G3.i.2 (see Figure 3.8). Therefore,

by definition of RF
(0)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 0, k′τ is the same in G3.i.1 and G3.i.2,

and the outputs of EncO and DecO are identically distributed. �

Queries with τi+1 = 1:

Observe that for all y ∈ Span(M,
(0

M1

)
) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G3.i.2︷ ︸︸ ︷
y⊤
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF′
(0)
i (τ|i)

)

= y⊤
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y⊤M∗

0RF′
(0)
i (τ|i)

︸ ︷︷ ︸
=0

=

G3.i.1︷ ︸︸ ︷
y⊤ ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)

where the second equality uses the fact M⊤M∗
0 =

(0
M1

)⊤
M∗

0 = 0 and thus y⊤M∗
0 = 0.

This means that:

• the outputs of EncO that contains [y] whose tag τ = H([y]) is such that τi+1 = 1 are
identically distributed in G3.i.1 and G3.i.2;

70 Chapter 3. Tightly CCA-Secure Encryption without Pairings

• the output of DecO on any input ([y], φ) where τ = H([y]), τi+1 = 1, and y ∈ Span(M,
(0

M1

)
)

is the same in G3.i.1 and G3.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 =
1, and y /∈ Span(M,

(0
M1

)
). We introduce intermediate games G3.i.1.j , and G′3.i.1.j for j =

0, . . . , QDec, defined as follows:

• G3.i.1.j : DecO is as in G3.i.1 except that for the first j times it is queried, it outputs ⊥ to
any ill-formed query. EncO is as in G3.i.2.

• G′3.i.1.j : DecO is as in G3.i.2 except that for the first j times it is queried, it outputs ⊥ to
any ill-formed query. EncO is as in G3.i.2.

We show that:

G3.i.1 ≡ G3.i.1.0 ≈AE G3.i.1.1 ≈AE . . . ≈AE G3.i.1.QDec
≡ G′3.i.1.QDec

G′3.i.1.QDec
≈AE G′3.i.1.QDec−1 ≈AE . . . ≈AE G′3.i.1.0 ≡ G3.i.2

where ≡ denote statistical equality, and ≈AE denotes indistinguishability based on the security
of AE .

It suffices to show that for all j = 0, . . . , QDec−1, there exist adversaries B3.i.1.j and B′3.i.1.j

against the one-time authenticity of AE , such that T(B3.i.1.j) ≈ T(B′3.i.1.j) ≈ T(A) + (QEnc +
QDec) · poly(λ), with poly(λ) independent of T(A), and such that:

Claim 1: in G3.i.1.j , if the j+1-st query is ill-formed, then DecO outputs ⊥ with overwhelming
probability 1− Advae-ot

AE,B3.i.1.j
(λ) (this implies G3.i.1.j ≈AE G3.i.1.j+1).

Claim 2: in G′3.i.1.j , if the j +1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− Advae-ot

AE,B′
3.i.1.j

(λ) (this implies G′3.i.1.j ≈AE G′3.i.1.j+1).

We prove Claim 1 and 2 as in Lemma 16, in Section 3.1, arguing that the encapsulation key
K computed by DecO on an ill-formed j + 1-st query, is completely hidden from A, up to
its j + 1-st query to DecO. The reason is that the vector ki+1,1 in sk contains some entropy
that is hidden from A, and that is “released" on the j + 1-st query, if it is ill-formed. Then,
we use the one-time authenticity of AE to argue that DecO outputs ⊥ with all but negligible
probability.�

Lemma 24: From game G3.i.2 to game G3.i.3

For all 0 ≤ i ≤ λ−1, there exists an adversary B3.i.2 such that T(B3.i.2) ≈ T(A)+(QEnc +
QDec) · poly(λ),

|AdvG3.i.2
(A)− Adv3.i.3| ≤ 2QDec · Advae-ot

AE,B3.i.2
(λ),

where QEnc, QDec are the number of queries to EncO and DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 24. In G3.i.3, we use the same decomposition Span(M⊥) = Span(M∗
0, M∗

1) as
that in G3.i.2. The entropy of the component of k′τ that lies in Span(M∗

1) increases from G3.i.2 to
G3.i.3. That is, we use a random function RF

(1)
i+1 : {0, 1}i+1 → Zk

p in place of the random function

RF
(1)
i : {0, 1}i → Zk

p. To argue that these two games are computationally indistinguishable, we
use a computational variant of the Cramer-Shoup argument [CS03], exactly as in the proof of
Lemma 23.

3.3 Security proof of PKE 71

We define RF
(1)
i+1 → Zk

p as follows:

RF
(1)
i+1(τ|i+1) :=





RF
(1)
i (τ|i) + RF′

(1)
i (τ|i) if τi+1 = 0

RF
(1)
i (τ|i) if τi+1 = 1

where RF′
(1)
i : {0, 1}i → Zk

p is a random function independent from RF
(1)
i . This way, RF

(1)
i+1 is

a random function.
We show that the outputs of EncO and DecO are computationally indistinguishable in G3.i.1

and G3.i.2, similarly that in the proof of Lemma 17, in Section 3.1 (see the latter for further
details).

Lemma 25: From game G3.i.3 to game G3.i+1

For all 0 ≤ i ≤ λ−1, there exists an adversary B3.i.3 such that T(B3.i.3) ≈ T(A)+(QEnc +
QDec) · poly(λ) and

|Adv3.i.3 − AdvG3.i+1
(A)| ≤ 2 · Adv

Uk(p)-mddh

G,B3.i.3
(λ) +

2
p− 1

,

where QEnc, QDec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 25. First, we use the fact that for all τ ∈ {0, 1}λ, the vector M∗
0RF

(0)
i+1(τ|i+1)

+ M∗
1RF

(1)
i+1(τ|i+1) is identically distributed to M⊥RFi+1(τ|i+1), where RFi+1 : {0, 1}i+1 → Z2k

p

is a random function. This is because (M∗
0, M∗

1) is a basis of Span(M⊥). That means A’s
view can be simulated only knowing M⊥, and not M∗

0, M∗
1 explicitly. Then, to go from G3.i.3

to G3.i+1, we switch the distribution of the vectors [y] sampled by EncO, using the QEnc-fold
U2k,k(p)-MDDH Assumption (equivalent to the Uk-MDDH Assumption, see Lemma 2) twice:
first with respect to a matrix M0 ←R U2k,k(p) for ciphertexts with τi+1 = 0, then with respect
to an independent matrix M1 ←R U2k,k(p) for ciphertexts with τi+1 = 1 (see the proof of
Lemma 22 for further details).

Lemma 26: From game G3.λ to G4

There exists an adversary B3.λ such that T(B3.λ) ≈ T(A) + (QEnc + QDec) · poly(λ), and

|AdvG3.λ
(A)− AdvG4(A)| ≤ QDecQEnc · Advae-ot

AE,B3.λ
(λ) +

QDec

p
,

where QEnc, QDec are the number of queries to EncO and DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 26. We use the one-time authenticity of AE to argue that with all but neg-
ligible probability, DecO outputs ⊥ on any input ([y], φ) such that for some previous output
([y′], φ′) of EncO, H([y′]) = H([y]).

We introduce intermediate games G3.λ.j for j = 0, . . . , QDec, defined as G3.λ, except that on
its first j query, DecO is as in G4, that is, it outputs ⊥ to any query corresponding to a tag τ
previously output by EncO.

We show that :

G3.λ ≡ G3.λ.0 ≈AE G3.λ.1 ≈AE . . . ≈AE G3.λ.QDec
≡ G4,

72 Chapter 3. Tightly CCA-Secure Encryption without Pairings

where ≡ denotes statistical equality, and ≈AE denotes indistinguishability based on the security
of AE .

Namely, we build adversaries B3.λ.j for j = 0, . . . , QDec − 1, such that T(B3.λ.j) ≈ T(A) +
(QEnc + QDec) · poly(λ), where poly(λ) is independent of T(A), and

|AdvG3.λ.j
(A)− AdvG3.λ.j+1

(A)| ≤ QEnc · Advae-ot
AE,B3.λ.j

(λ) +
1
p

.

This implies the lemma.
It suffices to show that in G3.λ.j , with all but negligible probability, DecO outputs ⊥ to its

j + 1-st query if it contains [y⋆] such that H([y⋆]) = H([y]), for [y] that was output previously
by EncO.

We build B3.λ.j as follows.

pk : Upon receiving the description of K := G, B3.λ.j picks M←R U3k,k, k1,0, . . . , kλ,1 ←R Z3k
p ,

H←R H(1λ), and outputs pk as in G4 (see Figure 3.7). It also picks j⋆ ←R {1, . . . , QEnc},
and b←R {0, 1}.

EncO(m0, m1) : On the j⋆’th query, B3.λ.j picks y←R Z3k
p , calls the encryption oracle for AE ,

EncO(mb, mb) to get φb := EncAE(K⋆, mb), for a random K⋆ ←R G. The rest of the
simulation goes as in G4 (see Figure 3.7), that is: if H([y]) /∈ TEnc ∪ TDec, B3.λ.j returns
([y,], φb), sets TEnc := TEnc ∪ {H([y])} and CEnc := CEnc ∪ {([y], φb)}, otherwise, it returns
⊥. The other j 6= j⋆ queries are simulated as in G4.

DecO([y], φ): the first j queries are simulated as in G4, the last QEnc − j − 1 as in G3.λ. For
the j + 1-st query ([y⋆], φ⋆), B3.λ.j calls the decryption oracle for AE , DecO([y⋆], φ⋆) to
get DecAE(K⋆, φ⋆). The rest of the simulation goes as in G3.i, that is, if ([y⋆], φ⋆) ∈ CEnc

or ∃([y], φ) ∈ CEnc with H([y⋆]) = H([y]) and y⋆ 6= y, B3.λ.j returns ⊥. Otherwise, it
returns DecAE(K⋆, φ⋆). Finally, it sets TDec := TDec ∪ {H([y⋆])}.

Assume the j + 1-st query ([y⋆], φ⋆) to DecO is such that DecO([y⋆], φ⋆) = ⊥ in G4, but
not in G3.λ.j . In particular, that means that there exists ([y], φ) ∈ CEnc such that y = y⋆ and
φ 6= φ⋆. Then, with probability 1/QEnc over the choice of j⋆, ([y], φ) is the j⋆’th query of EncO.
In that case, we show that A’s view is simulated as in G3.λ.j if DecO is the real decryption
oracle, and as in G4 if it is the “always ⊥” function. This implies the lemma.

Indeed, the key K⋆ := [y⋆⊤(kτ⋆ + M⊥RFλ(τ⋆))] for τ⋆ := H([y⋆]) is random, independent
from A’s view up to its j + 1-st query on DecO (except what leaks through EncAE(K⋆, mb)).
This is because:

1. with probability 1/q over the random coins of B3.λ.j , y⋆ ←R Z3k
p /∈ Span(M).

2. for all [y] contained in EncO outputs or DecO queries that don’t output ⊥, prior to the
j + 1-st DecO query, we have H([y]) 6= τ⋆, by definition of G3.λ.j . That is, the tag τ⋆ is
“fresh”. Therefore, the key

K⋆ := [y⋆⊤(kτ⋆ + M⊥RFλ(τ⋆))] = [y⊤kτ⋆ + y⋆⊤M⊥

︸ ︷︷ ︸
6=0

RFλ(τ⋆)]

is random, independent of A’s view up to its j + 1-st query (except what leaks through
EncAE(K⋆, mb)).

This proves that

|AdvG3.λ.j
(A)− AdvG3.λ.j+1

(A)| ≤ QEnc · Advae-ot
AE,B3.λ.j

(λ) +
1
p

.

3.3 Security proof of PKE 73

Lemma 27: Game G4

There exists an adversary B4 such that T(B4) ≈ T(A)+(QEnc +QDec) ·poly(λ), such that

AdvG4(A) ≤ QEnc · Advae-ot
AE,B4

(λ) +
QEnc

p
,

where QEnc denotes the number queries to EncO, and poly(λ) is independent of T(A).

Proof of Lemma 27. First, we show that the joint distribution of all the values K computed
by EncO is statistically close to uniform over GQEnc . Then, we use the one-time privacy of AE
on each one of the QEnc symmetric ciphertexts.

Recall that on input τ , EncO(τ) computes

K := [y⊤(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z2k
p is a random function, and y←R Z3k

p .
We make use of the following properties:

Property 1: all the tags τ computed by EncO(m0, m1), such that EncO(m0, m1) 6= ⊥, are
distinct.

Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ TEnc}. This is because for
all queries ([y], φ) to DecO such that H([y]) ∈ TEnc, DecO([y], φ) = ⊥, independently of
RFλ(τ), by definition of G4.

Property 3: with probability at least 1− QEnc

p over the random coins of EncO, all the vectors
y sampled by EncO are such that y⊤M⊥ 6= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by EncO is uni-
formly random over

(
Z2k

p

)QEnc (from Property 1), independent of the outputs of DecO (from
Property 2). Finally, from Property 3, we get that the joint distribution of all the values K
computed by EncO is statistically close to uniformly random over GQEnc , since:

K := [y⊤(kτ + M⊥RFλ(τ)) = [y⊤kτ + y⊤M⊥

︸ ︷︷ ︸
6=0 w.h.p.

RFλ(τ)].

Therefore, we can use the one-time privacy of AE to argue that all symmetric ciphertexts
φb computed by EncO don’t reveal b (this uses a hybrid argument over the QEnc challenge
ciphertexts).

74 Chapter 3. Tightly CCA-Secure Encryption without Pairings

Chapter 4

Multi-Input Inner-Product

Functional Encryption from Pairings

Overview of the construction

In this chapter, we present a multi-input functional encryption scheme (MIFE) for inner prod-
ucts based on the MDDH assumption in prime-order bilinear groups. The construction ap-
peared in [AGRW17], and was the first MIFE scheme for a non-trivial functionality based on
standard cryptographic assumptions with polynomial security loss, for any polynomial number
of slots and secure against unbounded collusions. We prove in this thesis a stronger security
guarantee than in [AGRW17]. Namely, the novelty here, is that input slots can collude, and
should not be able to break the security of the encryption for the other slots. The security
notion that captures corruption of input slots is formally described in Definition 23. Moreover,
using a single-input FE that is secure in a multi-instance setting, we obtain a multi-input FE
(see Figure 4.6) that is more efficient that the original scheme from [AGRW17].

Concretely, the set of functionality {Fn}n∈N we consider is that of “bounded-norm” multi-
input inner products: each key is specified by a vector (y1‖ · · · ‖yn) ∈ Zmn, takes as input n
vectors x1, . . . , xn, each of dimension m, and outputs

Fn((y1‖ . . . , ‖yn), x1, . . . , xn) =
n∑

i=1

〈xi, yi〉.

We require that the x1, . . . , xn, y1, . . . , yn have bounded norm, and inner product is computed
over the integers. The functionality is a natural generalization of single-input inner prod-
uct functionality introduced by Abdalla et. al [ABDP15], and studied in [ABDP15, BJK15,
DDM16, ALS16, ABDP16], and captures several useful computations arising in the context of
data-mining.

Prior approaches. Prior constructions of MIFE schemes in [BLR+15] require (at least) nm-
linear maps for n slots with m-bit inputs as they encode each input bit for each slot into a fresh
level of a multilinear map. In addition, there is typically a security loss that is exponential
in n due to the combinatorial explosion arising from combining different ciphertexts across
the slots. In the case of inner products, one can hope to reduce the multilinearity to n by
exploiting linearity as in the single-input FE; indeed, this was achieved in two independent
works [LL16, KLM+18]1 showing how to realize a two-slot MIFE for inner products over
bilinear groups. We stress that our result is substantially stronger: we show how to realize
n-slot MIFE for inner products for any polynomial n over bilinear groups under standard
assumptions, while in addition avoiding the exponential security loss. In particular, we deviate

1This work is independent of both works.

75

76 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

from the prior approaches of encoding each slot into a fresh level of a multilinear map. We
stress that prior to [AGRW17], we did not even have a candidate for 3-slot MIFE for inner
products in the generic bilinear group model.

A public-key scheme. Our first observation is that we can build a public-key MIFE for inner
product by running n independent copies of a single-input FE for inner products. Combined
with existing instantiations of the latter in [ABDP15], this immediately yields a public-key
MIFE for inner products under the standard DDH in cyclic group G (we use the implicit
representation of group elements as defined in Section 2.2.1).

In a bit more detail, we recall the DDH-based public-key single-input FE scheme from
[ABDP15]:

pk := [w], ctx = ([s], [x + ws]), sky := 〈w, y〉.
Decryption computes [〈x, y〉] = [x + ws]⊤y− [s] · 〈w, y〉 and then recovers 〈x, y〉 by computing
the discrete log.

Our public-key MIFE scheme is as follows:

pk := ([w1], . . . , [wn]),

ctxi := ([si], [xi + wisi]),

sky1,...,yn := (〈w1, y1〉, . . . , 〈wn, yn〉).

We note that the encryption of xi uses fresh randomness si; to decrypt, we need to know
each 〈wi, yi〉, and not just 〈w1, y1〉 + · · · + 〈wn, yn〉. In particular, an adversary can easily
recover each [〈xi, yi〉], whereas the ideal functionality should only leak the sum

∑n
i=1〈xi, yi〉.

In the public-key setting, it is easy to see that 〈xi, yi〉 is in fact inherent leakage from the ideal
functionality. Concretely, an adversary can always pad an encryption of xi in the i’th slot with
encryptions of 0’s in the remaining n− 1 slots and then decrypt.

Our main scheme. The bulk of this work lies in constructing a multi-input FE for inner
product in the private-key setting, where we can no longer afford to leak 〈xi, yi〉. We modify
the previous scheme by introducing additional rerandomization into each slot with the use of
bilinear groups as follows:

msk := {[wi]2, [vi]2, [zi]T }i∈[n],

eki := ([wi]1, [vi]1, [zi]1),

ctxi := ([si]1, [xi + wisi]1, [zi + visi]1),

sky1,...,yn := ([〈w1, y1〉+ v1r]2, . . . , [〈wn, yn〉+ vnr]2, [r]2, [(z1 + · · ·+ zn)r]T).

The ciphertext ctxi can be viewed as encrypting xi‖zi using the single-input FE, where
z1, . . . , zn are part of msk. In addition, we provide a single-input FE key for yi‖r in the secret
key, where a fresh r is sampled for each key. Decryption proceeds as follows: first compute

[〈xi, yi〉+ zir]T = e([xi + wisi]⊤1, [yi]2) + e([zi + visi]⊤1, [r]2)− e([si], [〈wi, yi〉+ vir]2)

and then

[
n∑

i=1

〈xi, yi〉]T = −[(z1 + · · ·+ zn)r]T +
n∑

i=1

[〈xi, yi〉+ zir]T .

The intuition underlying security is that by the DDH assumption [zir]T is pseudorandom
and helps mask the leakage about 〈xi, yi〉 in [〈xi, yi〉+ zir]T ; in particular,

[〈x1, y1〉+ z1r]T , . . . , [〈xn, yn〉+ znr]T , [(z1 + · · ·+ zn)r]T

77

constitutes a computational secret-sharing of [〈x1, y1〉 + · · · + 〈xn, yn〉]T , even upon reusing
z1, . . . , zn as long as we pick a fresh r. In addition, sharing the same exponent r across n
elements in the secret key helps prevent mix-and-match attacks across secret keys.

Our main technical result is that a variant of the private-key MIFE scheme we just described
satisfies adaptive indistinguishability-based security under the k-Lin assumption in bilinear
groups; a straight-forward extension of an impossibility result in [BSW11, AGVW13] rules out
simulation-based security. Our final scheme, described in Figure 4.6, remains quite simple and
achieves good concrete efficiency. We focus on selective security in this overview, and explain
at the end the additional ideas needed to achieve adaptive security.

Overview of the security proof. There are two main challenges in the security proof:
(i) avoiding leakage beyond the ideal functionality, (ii) avoiding super-polynomial hardness
assumptions. Our proof proceeds in two steps: first, we establish security with a single challenge
ciphertext per slot, and from which we bootstrap to achieve security with multiple challenge
ciphertexts per slot. We will address the first challenge in the first step and the second challenge
in the second. For notation simplicity, we focus on the setting with n = 2 slots and a single
key query y1‖y2.

Step 1. To prove indistinguishability-based security, we want to switch encryptions x0
1, x0

2

to encryptions of x1
1, x1

2. Here, the leakage from the ideal functionality imposes the restriction
that

〈x0
1, y1〉+ 〈x0

2, y2〉 = 〈x1
1, y1〉+ 〈x1

2, y2〉

and this is the only restriction we can work with. The natural proof strategy is to introduce an
intermediate hybrid that generates encryptions of x1

1, x0
2. However, to move from encryptions

x0
1, x0

2 to this hybrid, we would require that 〈x0
1‖x0

2, y1‖y2〉 = 〈x1
1‖x0

2, y1‖y2〉, which implies the
extraneous restriction 〈x0

1, y1〉 = 〈x1
1, y1〉. (Indeed, the single-input inner-product scheme in

[BJK15] imposes extraneous restrictions to overcome similar difficulties in the function-hiding
setting.)

To overcome this challenge, we rely on a single-input FE that achieves simulation-based
security, which allows us to avoid the intermediate hybrid. See Theorem 9 and Remark 11 for
further details.

Step 2. Next, we consider the more general setting with Q1 challenge ciphertexts in the first
slot and Q2 in the second, but still a single key query. We achieve security loss O(Q1 + Q2) for
two slots, and more generally, O(Q1 + · · · + Qn) —as opposed to Q1Q2 · · ·Qn corresponding
to all possible combinations of the challenge ciphertexts— for n slots.

Our first observation is that we can bound the leakage from the ideal functionality by
O(Q1 +Q2) relations (the trivial bound being Q1 ·Q2). Denote the j’th ciphertext query in the
i’th slot by xj,b

i , where b is the challenge bit. By decrypting the encryptions of x2,b
1 , x1,b

2 and
x1,b

1 , x1,b
2 and substracting the two, the adversary learns 〈x2,b

1 − x1,b
1 , y1〉 and more generally,

〈xj,b
i −x1,b

i , yi〉. Indeed, these are essentially the only constraints we need to work with, namely:

〈x1,0
1 , y1〉+ 〈x1,0

2 , y2〉 = 〈x1,1
1 , y1〉+ 〈x1,1

2 , y2〉,
〈xj,0

i − x1,0
i , yi〉 = 〈xj,1

i − x1,1
i , yi〉, j = 2, . . . , Qi, i = 1, 2.

Next, we need to translate the bound on the constraints to a O(Q1 +Q2) bound on the security
loss in the security reduction. We will switch from encryptions of xj,0

i to those of xj,1
i as follows:

we write

xj,0
i = x1,0

i + (xj,0
i − x1,0

i).

78 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

We can switch the first terms in the sums from x1,0
i to x1,1

i using security for a single
challenge ciphertext, and then switch xj,0

i − x1,0
i to xj,1

i − x1,1
i by relying on security of the

underlying single-input FE and the fact that 〈xj,0
i − x1,0

i , yi〉 = 〈xj,1
i − x1,1

i , yi〉. Here, we will
require that the underlying single-input FE satisfies a malleability property, namely given ∆,
we can maul an encryption of x into that of x + ∆. Note that this does not violate security
because given 〈x, y〉, y, ∆, we can efficiently compute 〈x + ∆, y〉. See Theorem 10 for further
details.

Extension to adaptive security. The previous argument for selective security requires to
embed the challenge into the setup parameters. To circumvent this issue, we use a two-step
strategy for the adaptive security proof of MIFE. The first step uses an adaptive argument (this
is essentially the argument used for the selective case, but applied to parameters that are picked
at setup time), while the second step uses a selective argument, with perfect security. Thus, we
can afford to use to simply guess the challenge beforehand, which incurs an exponential security
loss, since the exponential term is multiplied by a zero term. The idea of using complexity
leveraging to deduce adaptive security from selective security when the security is perfect, also
appears in [Wee14, Remark 1]. See Remark 12 for further details.

Security against corruption of input slots. Proving the stronger security notion requires
solving technical challenges that did not arise in [AGRW17]. In particular, to obtain full
fledged many-AD-IND security, [AGRW17] use a generic transformation that uses an extra
layer of symmetric encryption, to encrypt the original ciphertext. The symmetric key is shared
across input slots, and the i’th share is given as part of any ciphertext for input slot i ∈ [n].
Thus, when ciphertexts are known for all slots i ∈ [n], the decryption recovers all shares of
the symmetric key, and decrypt the outer layer, to get the original ciphertext. The rest of
decryption is performed as in the original multi-input FE.

The problem with this approach is that the encryption algorithm needs to know the sym-
metric key (and not simply a share of it). Thus, corrupting one input slot allows the adversary
to recover the entire symmetric key, and break the security of the scheme. Such problem did
not arise in [AGRW17], which does not consider corruptions of input slots. To circumvent this
issue, as in [DOT18], we use the symmetric key to encrypt the functional secret keys, instead
of encrypting the ciphertexts. Each encryption key eki for input slot i ∈ [n] contains the i’th
share of the symmetric key, but the full symmetric key is only needed by the key generation
algorithm, which knows msk. If one share is missing, all the functional secret keys are random.
Security of the overall multi-input FE when zero functional secret keys are queried concludes
the security proof. See Section 2.4.2 for further details.

Theoretical perspective. The focus of this work is on obtaining constructions for a specific
class of functions with good concrete efficiency. Nonetheless, we believe that our results do
shed some new insights into general feasibility results for MIFE. Namely, we presented the first
MIFE for a non-trivial functionality that polynomial security loss for a super-constant number
of slots under falsifiable assumptions. Recall that indistinguishability obfuscation and generic
multilinear maps are not falsifiable, whereas the constructions based on single-input FE in
[AJ15, BV15, BKS16] incur a security loss which is exponential in the number of slots. Indeed,
there is a reason why prior works relied on non-falsifiable assumptions or super-polynomial
security loss. Suppose an adversary makes Q0 key queries, and Q1, . . . , Qn ciphertext queries
for the n slots. By combining the ciphertexts and keys in different ways, the adversary can
learn Q0Q1 · · ·Qn different decryptions. When n is super-constant, the winning condition in
the security game may not be efficiently checkable in polynomial-time, hence the need for either

1The security notion achieved in [KLM+18] is actually a weaker variant of many-AD-IND in which the
adversary is only allowed to perform a single key query at the beginning of the security game.

79

a non-falsifiable assumption or a super-polynomial security loss. To overcome this difficulty, we
show that for inner products, we can exploit linearity to succinctly characterize the Q0Q1 · · ·Qn

constraints by roughly Q0 · (Q1 + · · ·Qn) constraints.

Discussion. Our constructions and techniques may seem a-priori largely tailored to the
inner product functionality and properties of bilinear groups. We clarify here that our high-
level approach (which builds upon [Wee14, BKP14]) may be applicable beyond inner products,
namely:

i. start with a multi-input FE that is only secure for a single ciphertext per slot and one
secret key, building upon a single-input FE whose security is simulation-based for a single
ciphertext (in our case, this corresponds to introducing the additional z1, . . . , zn to hide
the intermediate computation 〈xi, yi〉);

ii. achieve security for a single ciphertext per slot and multiple secret keys, by injecting
additional randomness to the secret keys to prevent mix-and-match attacks (for this, we
replaced z1, . . . , zn with z1r, . . . , znr, r in the exponent);

iii. “bootstrap” to multiple ciphertexts per slot, where we also showed how to avoid incurring
an exponential security loss.

In particular, using simulation-based security for i. helped us avoid additional leakage beyond
what is allowed by the ideal functionality.

Additional related work. Goldwasser et al. [GGG+14] showed that both two-input public-
key MIFE as well as n-input private-key MIFE for circuits already implies indistinguishability
obfuscation for circuits.

There have also been several works that proposed constructions for private-key multi-input
functional encryption. The work of Boneh et al. [BLR+15] constructs a single-key MIFE in the
private key setting, which is based on multilinear maps and is proven secure in the idealized
generic multilinear map model. Two other papers explore the question how to construct multi-
input functional encryption starting from the single input variant. In their work [AJ15] Ananth
and Jain demonstrate how to obtain selectively secure MIFE in the private key setting starting
from any general-purpose public key functional encryption. In an independent work, Brakerski
et al. [BKS16] reduce the construction of private key MIFE to general-purpose private key
(single input) functional encryption. The resulting scheme achieves selective security when the
starting private key FE is selectively secure. Additionally in the case when the MIFE takes
any constant number of inputs, adaptive security for the private key FE suffices to obtain
adaptive security for the MIFE construction as well. The constructions in that work provide
also function hiding properties for the MIFE encryption scheme.

While this line of work reduces MIFE to single-input FE for general-purpose constructions,
the only known instantiations of construction for public and private key functional encryption
with unbounded number of keys require either indistinguishability obfuscation [GGH+13b] or
multilinear maps with non-standard assumptions [GGHZ16]. We stress that the transforma-
tions from single-input to MIFE in [AJ15, BKS16] are not applicable in the case of inner
products since these transformations require that the single-input FE for complex functional-
ities related to computing a PRF, which is not captured by the simple inner functionality.

Road-map. In the rest of this chapter, we first present the selectively-secure MIFE in Sec-
tion 4.1, then show in Section 4.2 how to obtain adaptive security.

80 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Selectively-Secure, Private-Key MIFE for Inner Products

In this section, we present a private-key MIFE for bounded-norm inner products over Z, that
is, for the set of functionalities {F m,X,Y

n }n∈N defined as F m,X,Y
n : Kn×X1×· · ·×Xn → Z, with

Kn := [0, Y]mn, for all i ∈ [n], Xi := [0, X]m, Z := Z, such that for any (y1‖ · · · ‖yn) ∈ Kn,
xi ∈ Xi, we have:

F m,X,Y
n

(
(y1‖ · · · ‖yn), x1, . . . , xn

)
=

n∑

i=1

〈xi, yi〉.

Remark 7: on leakage

Let (xj,0
i , xj,1

i)i∈[n],j∈[Qi] be the ciphertext queries, and y1‖ · · · ‖yn be a secret key query.
For all slots i ∈ [n], all j ∈ [Qi], and all bits b ∈ {0, 1}, the adversary can learn

〈xj,b
i − x1,b

i , yi〉

via the ideal functionality. In the IND security game, this means the adversary is restricted
to queries satisfying

〈xj,0
i − x1,0

i , yi〉 = 〈xj,1
i − x1,1

i , yi〉.
In the hybrid, we want to avoid additional constraints such as

〈xj,0
i − x1,0

i , yi〉 = 〈xj,0
i − x1,1

i , yi〉 = 〈xj,1
i − x1,0

i , yi〉 = 〈xj,1
i − x1,1

i , yi〉.

We prove many-SEL security, for static corruptions (see Definition 23), using an asymmetric
pairing group PG = (G1,G2,GT , p, P1, P2, e) with e : G1×G2 → GT of prime order p, where p
is a 2λ-bit prime. Our construction relies on the Matrix Decisional Diffie-Hellman assumption
in G1 and in G2 (see Definition 10), and build upon any single-input FE for inner products, that
satisfies one-SEL-SIM security, along with some additional structural properties. Such single-
input FE can be obtained by straightforwardly adapting the scheme from [ALS16, Section 3],
and is recalled in Section 2.6.1 for completeness. For correctness, we require n; m; X; Y to be
polynomials in the security parameter. This implies that:

n ·m ·X · Y ≪ p.

Our generic single-to-multi input construction is described in Figure 4.1. We present a self-
contained description of the scheme in Figure 4.6.

Selectively-secure, multi-input scheme from single-input scheme

Main construction. We present in Figure 4.1 a private key multi-input FE, MIFE , for
the bounded-norm inner products over Z, starting from any one-SEL-SIM secure, single-input
inner products FE, FE , that additionally satisfies the following requirements.

Additional requirements. The construction and the analysis requires that FE := (GSetup′,
Setup′, Enc′, KeyGen′, Dec′) satisfies the following structural properties:

• The scheme can be instantiated over G1, where the ciphertext is a vector [c]1 over G1

and the secret key is a vector di over Zp.

• Enc′ is linearly homomorphic. More specifically, we only that, given gpk′, Enc′(gpk′, ek′, x),
and x′, we can generate a fresh random encryption of x + x′, i.e. Enc′(gpk′, ek′, x + x′).
This property is used in the proof of Lemma 31 and Lemma 32.

4.1 Selectively-Secure, Private-Key MIFE for Inner Products 81

• For correctness, Dec′ should be linear in its input d and [c]1, so that Dec′(gpk′, [d]2, [c]1) =
[Dec′(gpk′, d, c)]T ∈ GT can be computed using a pairing.

• For an efficient MIFE decryption, Dec′ must work without any restriction on the norm
of the output as long as the output is in the exponent.

• Let (G̃Setup, S̃etup, Ẽnc, K̃eyGen) be the simulator for the one-SEL-SIM security of FE .

We require that K̃eyGen(m̃sk, ·, ·) is linear in its inputs (y, a), so that we can compute

K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk, y, a)]2. This property is used in the proof of
Lemma 29.

Setup(1λ, F m,X,Y
n):

gpk′ ← GSetup′(1λ, F m+k,X,Y
IP), where gpk′ contains PG := (G1,G2, p, P1, P2, e)← PGGen(1λ)

For all i ∈ [n]:
(
ek′

i, msk′
i

)
← Setup′(1λ, gpk′, F m+k,X,Y

IP), zi ←R Zk
p, eki := (ek′

i, zi)
pk := gpk′, msk := {msk′

i, zi}i∈[n]

Return (pk, msk, (eki)i∈[n])

Enc(pk, eki, xi):

Return Enc′(gpk′, ek′
i, xi‖zi)

KeyGen(pk, msk, y1‖ · · · ‖yn):

r←R Zk
p, z := 〈z1 + · · ·+ zn, r〉

For all i ∈ [n]: di ← KeyGen′(gpk′, msk′
i, yi‖r)

dky1‖···‖yn
:=
(
(y1‖ · · · ‖yn), {[di]2}i∈[n], [r]2, [z]T

)

Return dky1‖···‖yn

Dec
(
pk, dky1‖···‖yn

, ct1, . . . , ctn):

Parse dky1‖···‖yn
=
(
(y1‖ · · · ‖yn), {[di]2}i∈[n], [r]2, [z]T

)

For all i ∈ [n]: [ai]T ← Dec′(gpk′, [di]2, cti)
Return the discrete log of (

∑n
i=1[ai]T)− [z]T

Figure 4.1: Multi-input functional encryption scheme MIFE for the bounded norm inner-product
over Z. FE := (GSetup′, Setup′, Enc′, KeyGen′, Dec′) refers to a single-input inner-product FE.

Correctness. By correctness of FE , we have for all i ∈ [n]: [ai]T = [〈xi‖zi, yi‖r〉]T . Thus,
decryption computes:

[
(

n∑

i=1

〈xi‖zi, yi‖r〉)− 〈z1 + · · ·+ zn, r〉
]

T

= [〈x1‖ · · · ‖xn, y1‖ · · · ‖yn〉]T

We know
∑

i〈xi, yi〉 ≤ n·m·X ·Y , which is bounded by a polynomial in the security parameter.
Thus, decryption can efficiently recover the discrete log:

∑
i〈xi, yi〉 mod p =

∑
i〈xi, yi〉, where

the equality holds since
∑

i〈xi, yi〉 ≤ n ·m ·X · Y ≪ p.

Remark 8: Optimization

A more efficient version of our scheme would be to take zi ←R Zk
p subject to

∑
i zi = 0.

This way, we don’t have to include the value [z]T in the secret keys, since it would
cancel out. We choose to present the inefficient version which includes the value [z]T for
simplicity.

82 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Remark 9: Notations

We use subscripts and superscripts for indexing over multiple copies, and never for in-
dexing over positions or exponentiation. Concretely, the j’th ciphertext query in slot i is
xj

i .

Security. First, we prove the one-SEL-IND-static security of MIFE , in Theorem 9, that
is, in English: the scheme is secure for only one challenge ciphertext per input slot, in the
selective setting, for static corruptions (see Definition 23). Then, in Theorem 10, we show how
to upgrade the security of the MIFE to many-SEL-IND-static, that is, for many challenge
ciphertexts.

Theorem 9: one-SEL-IND-static security of MIFE

Suppose FE is one-SEL-SIM secure for n instances, and that the Uk(p)-MDDH assumption
holds in G2. Then, MIFE is one-SEL-IND-static secure.

Recall that the Uk(p)-MDDH assumption is the weakest of all Dk(p)-MDDH assumptions,
for any matrix distribution Dk(p), according to Lemma 3. In particular, it is implied by the
well-known k-Lin assumption.

game cti: {di}i∈[n] in sky: z in sky: justification/remark

G0,β Enc′(gpk′, ek′
i, x

β
i ‖zi) KeyGen′(gpk′, msk′

i, yi‖r) z = 〈z1 + . . . + zn, r〉
one-SEL-IND-static

security game

G1,β Ẽnc(m̃ski) K̃eyGen(m̃ski, yi‖r, 〈xβ
i ‖zi, yi‖r〉) z = 〈z1 + . . . + zn, r〉

one-SEL-SIM

security of FE

G2,β Ẽnc(m̃ski) K̃eyGen(m̃ski, yi‖r, 〈xβ
i , yi〉+ z̃i) z =

∑
i∈CS

〈zi, r〉+
∑

i∈HS
z̃i Dk-MDDH

Figure 4.2: Sequence of games for the proof of Theorem 9. Here, for any slot i ∈ [n], cti refers to the
challenge ciphertext computed by oracle OEnc(i, (x0

i , x1
i)), di and z refers to the vectors computed by

the oracle OKeygen(y1‖ · · · ‖yn) as part of dky1‖···‖yn
, and (G̃Setup, S̃etup, Ẽnc, K̃eyGen) is the simulator

for the one-SEL-SIM security of FE .

Proof of Theorem 9. Using Theorem 2, it is sufficient to prove one-SEL-IND-zero-static (i.e.
the scheme is secure when no decryption keys are queried), and one-SEL-IND-weak-static
i.e. we assume the adversary requests a challenge ciphertext for all slots i ∈ HS, where
HS := [n] \ CS denotes the set of slots that are not corrupted) to obtain one-SEL-IND-static
security.

The one-SEL-IND-zero-static security of MIFE follows directly from the one-SEL-IND
security of FE (which is implied by its one-SEL-SIM security). In what follows, we prove
one-SEL-IND-weak-static security of MIFE .

We proceed via a series of games Gi,β for i ∈ {0, . . . , 2}, β ∈ {0, 1}, described in Figure 4.3.
The transitions are summarized in Figure 4.2. Let A be a PPT adversary. For any game G,
we denote by AdvG(A) the probability that the game G outputs 1 when interacting with A.
Note that the set of input slots for which a challenge ciphertext is queried, denoted by I in
Figure 4.3, is such that HS ⊆ I, since we want to prove one-SEL-IND-weak security.

Games G0,β, for β ∈ {0, 1}: are such that Advone-SEL-IND-weak-static
MIFE,A (λ) = |AdvG0,0(A) −

AdvG0,1(A)|, according to Definition 21.

4.1 Selectively-Secure, Private-Key MIFE for Inner Products 83

Games G0,β , G1,β , G2,β , for β ∈ {0, 1}:
(
{xb

i}i∈I⊆[n],b∈{0,1}, CS ⊆ [n]
)
← A(1λ, F m,X,Y

n)

gpk′ ← GSetup′(1λ, F m+k,X,Y
IP), pk := gpk′. For all i ∈ [n]: (ek′

i, msk′
i) ←

Setup′(1λ, gpk′, F m+k,X,Y
IP), zi ←R Zk

p, eki := (ek′
i, zi). For all i ∈ I: cti := Enc′(gpk′, ek′

i, xβ
i ‖zi).

(g̃pk, td) ← G̃Setup(1λ, F m+k,X,Y
IP), pk := g̃pk. For all i ∈ [n]:

(
ẽki, m̃ski

)
←

S̃etup(1λ, g̃pk, F m+k,X,Y
IP), zi ←R Zk

p, eki := (ẽki, zi). For all i ∈ CS∩I: cti := Enc′(g̃pk, ẽki, xβ
i ‖zi).

For all i ∈ HS: cti := Ẽnc(td, m̃ski).

α← AOKeygen(·) (pk, (cti)i∈I , (eki)i∈CS)
Return α.

OKeygen(y1‖ · · · ‖yn):

r←R Zk
p, ∀i ∈ HS : z̃i ←R Zp , z := 〈z1 + · · ·+ zn, r〉, z :=

∑
i∈CS〈zi, r〉+

∑
i∈HS z̃i

∀i ∈ [n]: di ← KeyGen′
(
gpk′, msk′

i, yi‖r
)
, di ← KeyGen′

(
g̃pk, m̃ski, yi‖r

)

∀i ∈ HS: di ← K̃eyGen
(

td, m̃ski, yi‖r, 〈xβ
i ‖zi, yi‖r〉

)

∀i ∈ HS : di ← K̃eyGen
(

td, m̃ski, yi‖r, 〈xβ
i , yi〉+ z̃i

)

dky1‖···‖yn
:=
(
{[di]2}i∈[n], [r]2, [z]T

)

Return dky1‖···‖yn

Figure 4.3: Games for the proof of Theorem 9. In each procedure, the components inside a solid
(dotted) frame are only present in the games marked by a solid (dotted) frame. Here, CS denotes the
set of corrupted slots, HS := [n] \ CS denotes the set of honest slots, and I ⊆ [n] denotes the set of
input slots for which there is a challenge ciphertext. We have HS ⊆ I.

84 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Games G1,β, for β ∈ {0, 1}: we replace (GSetup′, Setup′, KeyGen′, Enc′) by the simulator

(G̃Setup, S̃etup, K̃eyGen, Ẽnc), using the one-SEL-SIM security of FE for h instances, where h
denotes the size of HS, where HS is the set of honest input slots, that is, HS := [n] \ CS. We
prove in Lemma 28 that there exists a PPT adversary B1 such that

|AdvG0,β
(A)− AdvG1,β

(A)| ≤ Advone-SEL-SIM
FE,B1,h (λ).

Games G2,β, for β ∈ {0, 1}: we replace the values 〈zi, r〉 used by the oracle OKeygen to
z̃i ←R Zp, for all slots i ∈ HS, using the Uk(p)-MDDH assumption in G2. Namely, we prove
in Lemma 29 that there exists a PPT adversary B2 such that:

|AdvG1,β
(A)− AdvG2,β

(A)| ≤ Adv
Uk(p)-mddh

G2,B2
(λ) +

1
p− 1

.

Finally, in Lemma 30, we prove that G2,0 and G2,1 are perfectly indistinguishable, using a
statistical argument that crucially relies on the fact that we are in the selective security set-
ting, and using the restrictions on the queries to OKeygen and the challenge {xb

i}i∈I⊆[n],b∈{0,1}

imposed by the security game. We have:

AdvG2,0(A) = AdvG2,1(A).

Putting everything together, we obtain:

Advone-SEL-IND-weak-static
MIFE,A (λ) ≤ 2 · Advone-SEL-SIM

FE,B0,h (λ) + 2 · Adv
Uk-mddh

G2,B2
(λ) +

2
p− 1

,

where h ≤ n is the number of honest input slots.

Lemma 28: Game G0,β to G1,β

There exists a PPT adversary B1,β such that

AdvG0,β
(A)− AdvG1,β

(A) ≤ Advone-SEL-SIM
FE,B1,β ,h (λ),

where h denotes the size of HS, where HS is the set of honest input slots, that is,
HS := [n] \ CS.

Proof of Lemma 28. In the game G1,β , we replace (GSetup′, Setup′, Enc′, KeyGen′) by the simu-

lator (G̃Setup, S̃etup, Ẽnc, K̃eyGen), whose existence is ensured by the one-SEL-SIM security of
FE (see Definition 20). A complete description of games G0,β and G1,β is given in Figure 4.3.

The adversary B0,β proceeds as follows.

-Simulation of (pk, {cti}i∈I , {eki}i∈CS):

Upon receiving the challenge {xb
i}i∈I,b∈{0,1}, and the set of corrupted user CS ⊆ [n] from A,

adversary B0,β samples zi ←R Zk
p for all i ∈ [n], and sends {(xβ

i ‖zi)}i∈HS to the experiment it
is interacting with, upon which it receives the global public key gpk and ciphertexts {cti}i∈HS .
The global public key gpk is either of the form gpk = gpk′ with gpk′ ← GSetup′(1λ, F m,X,Y

IP) if
B0,β is interacting with the experiment REALFE(1λ,B0,β,ℓ), and gpk = g̃pk with (g̃pk, td) ←
G̃Setup(1λ, F m,X,Y

IP) if B0,β is interacting with the experiment IDEALFE(1λ,B0,β,ℓ) (see Defi-
nition 20 for a description of these experiments, with the one-SEL restriction). The ciphertexts
are of the form cti := Enc′(gpk′, ek′i, xβ

i ‖zi) or Ẽnc(td, ẽki, m̃ski), depending on which experi-
ment B0,β is interacting with.

For all i ∈ CS, B0,β samples (eki, mski) ← Setup′(1λ, gpk, F m,X,Y
IP). For all CS ∩ I, it

computes cti := Enc′(gpk, eki, xβ
i ‖zi). It sets pk := gpk, and returns (pk, {cti}i∈I , {eki}i∈CS) to

A.

4.1 Selectively-Secure, Private-Key MIFE for Inner Products 85

-Simulation of OKeygen(y1‖ . . . ‖yn):

For any query (y1‖ . . . ‖yn), B0,β,ℓ picks r ←R Zk
p. Then, for all i ∈ CS, it computes di ←

KeyGen′(gpk, mski, yi‖r). It can do so since it knows gpk and mski for all i ∈ CS. For all i ∈ HS,
B0,β queries its own decryption key oracle on yi‖r, to obtain di := KeyGen′(gpk′, msk′i, yi‖r) if

it is interacting with the real experiment, or di := K̃eyGen(td, m̃ski, yi‖r, 〈xβ
i ‖zi, yi‖r〉) if it is

interacting with the ideal experiment.
Then, it computes z := 〈z1 + · · ·+ zn, r〉 and returns dky1‖···‖yn

:=
(
{[di]2}i∈[n], [r]2, [z]T

)

to A.
Finally, B0,β forwards A’s output α to its own experiment. It is clear that when B0,β inter-

acts with the experiment REALFE(1λ,B0,β), it simulates the game G0,β , whereas it simulates
the game G,β when it interacts with IDEALFE(1λ,B0,β). Therefore,

Advone-SEL-SIM
FE,B0,β

(λ)

=
∣∣∣Pr

[
REALFE(1λ,B0,β) = 1

]
− Pr

[
IDEALFE(1λ,B0,β) = 1

]∣∣∣

= |AdvG0,β
(A)− AdvG1,β

(A)|

Lemma 29: Game G1,β to G2,β

There exists a PPT adversary B2,β such that:

AdvG1,β
(A)− AdvG2,β

(A) ≤ Adv
Uk-mddh

G2,B2,β
(λ) +

1
p− 1

.

Recall, from Lemma 3, that for any matrix distribution Dk(p), we have Dk(p)-MDDH
⇒ Uk(p)-MDDH.

86 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Proof of Lemma 29. Here, we switch {[r]2, [〈zi, r〉]2}i∈HS used by the oracle OKeygen to {[r]2,
[z̃i]2}i∈HS , where zi ←R Zk

p, z̃i ←R Zp, and r←R Zk
p. Recall that HS denotes the set of honest

slots, that is HS := [n] \ CS.
This is justified by the fact that {[r]2, [〈zi, r〉]2}i∈HS ∈ G

(k+h)
2 , where h is the size of HS,

is identically distributed to [Ur]2 where U ←R Uk+h,k(p) (wlog. we assume that the upper k
rows of U are full rank), which is indistinguishable from a uniformly random vector over Gk+h

2 ,
that is, of the form: {[r]2, [z̃i]2}i∈HS , according to the Uk+h,k(p)-MDDH assumption. To do the
switch simultaneously for all calls to OKeygen, that is, to switch {[rj]2, [〈zi, rj〉]2}i∈HS,j∈[Q0]

to {[rj]2, [z̃j
i]2}i∈HS,j∈[Q0], where z̃j

i ← Zp and rj ←R Zk
p for all j ∈ [Q0], where Q0 denotes

the number of calls to OKeygen, we use the Q0-fold Uk+h,k(p)-MDDH assumption. Namely, we
build a PPT adversary B′2,β such that

AdvG1,β
(A)− AdvG2,β

(A) ≤ Adv
Q0-Uk+h,k(p)-mddh

G2,B′
2,β

(λ).

This, together with Corollary 1 (Uk(p)-MDDH ⇒ Q0-fold Uk+h,k(p)-MDDH), implies the
lemma. The adversary B′2,β proceeds as follows.

-Simulation of (pk, {cti}i∈I , {eki}i∈CS):

Upon receiving an Q0-fold Uk+h,k-MDDH challenge
(
PG, [U]2 ∈ G

(k+h)×k
2 ,

[
h1‖ · · · ‖hQ0

]
2
∈ G

(k+h)×Q0

2

)
,

together with the challenge {xb
i}i∈I,b∈{0,1} and the set CS ⊆ [n] fromA, B′2,β samples (g̃pk, td)←

G̃Setup(1λ, F m+k,X,Y
IP). For all i ∈ [n], it samples (ẽki, m̃ski) ← S̃etup(1λ, g̃pk, F m+k,X,Y

IP),
zi ←R Zk

p, and sets eki := (ẽki, zi). For all i ∈ HS, it samples cti := Ẽnc(td, ẽki, m̃ski).

For all i ∈ CS ∩ I, it samples cti := Enc′(g̃pk, ẽki, xβ
i ‖zi). It sets pk := g̃pk, and returns

(pk, {cti}i∈I , {eki}i∈CS) to A.

-Simulation of OKeygen(y1‖ · · · ‖yn):

On the j’th query y1‖ · · · ‖yn of A, B′2,β sets [rj]2 := [hj]2, where hj ∈ Zk
p denotes the

k-upper components of hj ∈ Zk+n
p . For all i ∈ CS, it computes di := KeyGen′(g̃pk, m̃ski,

yi‖rj). For all i ∈ HS, it computes [di] := K̃eyGen
(
td, m̃ski, [yi‖rj]2, [〈xβ

i , yi〉+ hj
k+i]2

)
,

where hj
k+i denotes the k + i’th coordinate of the vector hj ∈ Zk+h

p . Here we rely on

the fact that K̃eyGen(td, m̃sk, ·, ·) is linear in its inputs (y, a), so that B′2,β can compute

K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk, y, a)]2. Note that when
[
h1‖ · · · ‖hQ0

]
2

is a real MDDH

challenge, B′2,β simulate game G1,β , whereas it simulates game G2,β when
[
h1‖ · · · ‖hQ0

]
2

is uni-

formly random over G
(k+n)×Q0

2 .

Lemma 30: Game G2,0 to G2,1

AdvG2,0(A) = AdvG2,1(A).

Proof of Lemma 30. We show that G2,β does not depend on β, using the fact that for all
y1‖ · · · ‖yn ∈ (Zm

p)n, for all {xb
i ∈ Zm

p }i∈[n],b∈{0,1}, the following are identically distributed:

{z̃i}i∈HS and {z̃i − 〈xβ
i , yi〉 }i∈HS ,

4.1 Selectively-Secure, Private-Key MIFE for Inner Products 87

where z̃i ←R Zp for all i ∈ HS.
For each query y1‖ · · · ‖yn, OKeygen(y1‖ · · · ‖yn) picks values z̃i ←R Zp for i ∈ HS that are

independent of y1‖ · · · ‖yn and the challenge {xb
i ∈ Zm

p }i∈[n],b∈{0,1} (note that here we crucially
rely on the fact the games G2,0 and G2,1 are selective), therefore, using the previous fact, we can

switch z̃i to z̃i − 〈xβ
i , yi〉 for all i ∈ HS, without changing the distribution of the game. This

way, for all i ∈ HS, OKeygen(y1‖ · · · ‖yn) computes di ← K̃eyGen(td, m̃ski, yi‖r, z̃i), which
does not depend on β, and

z :=
∑

i∈CS

〈zi, r〉+
∑

i∈HS

z̃i −
∑

i∈HS〈xβ
i , yi〉 .

By definition of the security game, we have x0
i = x1

i for all i ∈ CS ∩ I. Thus, we have:

z :=
∑

i∈CS

〈zi, r〉+
∑

i∈HS

z̃i −
∑

i∈I〈xβ
i , yi〉 .

Finally, by definition of the security game, we have:
∑

i∈I〈x0
i , yi〉 =

∑
i∈I〈x1

i , yi〉. This is
implied by Condition 1 in Definition 23, and the fact that HS ⊆ I. That means the value
[z]T computed by OKeygen does not depend on β. Finally, for all i ∈ CS, OKeygen(y1‖ · · · ‖yn)
computes di := KeyGen′(g̃pk, m̃ski, yi‖r), which does not depend on β. Putting everything
together, we get that G2,β is independent of β.

Remark 10: decryption capabilities

As a sanity check, we note that the simulated secret keys will correctly decrypt a sim-
ulated ciphertext. However, unlike schemes proven secure via the standard dual system
encryption methodology [Wat09], a simulated secret key will incorrectly decrypt a nor-
mal ciphertext. This is not a problem because we are in the private-key setting, so a
distinguisher will not be able to generate normal ciphertexts by itself.

Remark 11: why a naive argument is inadequate

We cannot afford to do a naive hybrid argument across the n slots for the challenge
ciphertext as it would introduce extraneous restrictions on the adversary’s queries. Con-
cretely, suppose we want to use a hybrid argument to switch from encryptions of x0

1, x0
2

in game 0 to those of x1
1, x1

2 in game 2 with an intermediate hybrid that uses encryp-
tions of x1

1, x0
2 in Game1. To move from game 0 to game 1, the adversary’s query y1‖y2

must satisfy 〈x0
1‖x0

2, y1‖y2〉 = 〈x1
1‖x0

2, y1‖y2〉, which implies the extraneous restriction
〈x0

1, y1〉 = 〈x1
1, y1〉.

As described in the proof above, we overcome the limitation by using simulation-based
security. Note that what essentially happens in the first slot in our proof is as follows (for
k = 1, that is, DDH): we switch from Enc′(pk′1, x0

1‖z1) to Enc′(pk′1, x1
1‖z1) while giving

out a secret key which contains KeyGen′(msk′1, y1‖r1) and [r1]2. Observe that

〈x0
1‖z1, y1‖r1〉 = 〈x0

1, y1〉+ z1r1, 〈x1
1‖z1, y1‖r1〉 = 〈x1

1, y1〉+ z1r1

may not be equal, since we want to avoid the extraneous restriction 〈x0
1, y1〉 = 〈x1

1, y1〉.
This means that one-SEL-IND security does not provide any guarantee that the cipher-
texts are indistinguishable. However, one-SEL-SIM security does provide such a guaran-
tee, because

([〈x0
1, y1〉+ z1r1]2, [r1]2) ≈c ([〈x1

1, y1〉+ z1r1]2, [r1]2)

via the DDH assumption in G2. Since the outcomes of the decryption are computationally

88 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

indistinguishable, the output of the simulated ciphertext would also be computationally
indistinguishable.

Theorem 10: many-yy-IND-static security of MIFE

Let yy ∈ {AD,SEL}. Suppose FE is many-yy-IND secure and MIFE is one-yy-IND-
static secure. Then, MIFE is many-yy-IND-static secure.

Since the construction MIFE from Figure 4.1 is proven one-SEL-IND-static secure in
Theorem 9, we obtain the following corollary.

Corollary 2: many-SEL-IND-static security of MIFE

The scheme MIFE from Figure 4.1 is many-SEL-IND secure, assuming the underlying
FE is many-SEL-IND secure.

That is, we show that our multi-input FE is selectively secure in the setting with multi-
ple challenge ciphertexts (and since our multi-input FE is a private key scheme, this is not
immediately implied by the one-SEL-IND security).

Proof overview.

• We first switch encryptions of x1,0
1 , . . . , x1,0

n to those of x1,1
1 , . . . , x1,1

n , and for the re-
maining ciphertexts, we switch from an encryption of xj,0

i = (xj,0
i − x1,0

i) + x1,0
i to

that of (xj,0
i − x1,0

i) + x1,1
i . This uses the one-yy-IND security of MIFE , and the fact

that its encryption algorithm is linearly homomorphic, thanks to which encryption of
(xj,0

i − x1,0
i) + x1,β

i can be publicly computed from an encryption of x1,β
i .

• Then, we switch from encryptions of

(x2,0
i − x1,0

i) + x1,1
i , . . . , (xQi,0

i − x1,0
i) + x1,1

i

to those of
(x2,1

i − x1,1
i) + x1,1

i , . . . , (xQi,1
i − x1,1

i) + x1,1
i .

This uses the many-yy-IND security of FE .

As described earlier, to carry out the latter argument, the queries must satisfy the constraint

〈(xj,0
i − x1,0

i) + x1,1
i , yi〉 = 〈(xj,1

i − x1,1
i) + x1,1

i , yi〉 ⇐⇒ 〈xj,0
i − x1,0

i , yi〉 = 〈xj,1
i − x1,1

i , yi〉

where the latter is already imposed by the ideal functionality.

Proof of Theorem 10. We proceed via a series of games, described in Figure 4.5. The transi-
tions are summarized in Figure 4.4. Let A be a PPT adversary. For any game G, we denote
by AdvG(A) the probability that the game G outputs 1 when interacting with A.

Game G0: is such that Adv
many-SEL-IND
MIFE,A (λ) = |AdvG0(A) − AdvG2(A)|, according to Defini-

tion 21.

Game G1: is as game G0, except we replace the challenge ciphertexts to ct
j
i = Enc(pk, eki,

xj,0
i −x1,0

i +x1,1
i) for all i ∈ [n] and j ∈ [Qi], using the one-yy-IND security ofMIFE . Namely,

we prove in Lemma 31 that there exists a PPT adversary B1 such that

AdvG0(A)− AdvG1(A) ≤ Adv
one-yy-IND
MIFE,B1

(λ).

4.1 Selectively-Secure, Private-Key MIFE for Inner Products 89

game ct
j
i : justification/remark

0 Enc(eki, xj,0
i − x1,0

i + x1,0
i)

many-yy-IND

security game

1 Enc(eki, xj,0
i − x1,0

i + x1,1
i) one-yy-IND security of MIFE

2 Enc(eki, xj,1
i) many-yy-IND security for n instance of FE

Figure 4.4: Sequence of games for the proof of Theorem 10. Here, for any slot i ∈ [n], and j ∈ [Qi],
ct

j
i refers to the j’th challenge ciphertext for slot i ∈ [n]. Changes are highlighted in gray for better

visibility.

Games G0, G1 , G2 :

CS ⊆ [n]← A(1λ, F m,X,Y
n)

(pk, msk, (eki)i∈[n])← Setup(1λ, F m,X,Y
n)

α← AOEnc(·,·),OKeygen(·)(pk, {eki}i∈CS)
Return α.

OEnc(i, (xj,0
i , xj,1

i)):

ct
j
i := Enc(pk, eki, xj,0

i − x1,0
i + x1,0

i)

ct
j
i := Enc(pk, eki, xj,0

i − x1,0
i + x1,1

i)

ct
j
i := Enc(pk, eki, xj,1

i − x1,1
i + x1,1

i)

Return ct
j
i .

OKeygen(y1‖ · · · ‖yn):
Return KeyGen(pk, msk, y1‖ · · · ‖yn).

Figure 4.5: Games for the proof of Theorem 10. In the selective variants of these games, the adversary
sends its challenges {xj,b

i }i∈[n],j∈[Qi],b∈{0,1} before seeing the public key and querying any decryption
keys.

Game G2: we replace the challenge ciphertexts to ct
j
i = Enc(pk, eki, xj,1

i − x1,1
i + x1,1

i) =
Enc(pk, eki, xj,1

i) for all i ∈ [n] and j ∈ [Qi], using the many-yy-IND security of FE for
n instances, which is implied by the single-instance security (see Lemma 5). We prove in
Lemma 32 that there exists a PPT adversary B2 such that

AdvG1(A)− Adv2(A) ≤ Adv
many-yy-IND
FE,B2,n (λ).

Putting everything together, we obtain:

Adv
many-yy-IND
MIFE,A (λ) ≤ Adv

one-yy-IND
MIFE,B1

(λ) + Adv
many-yy-IND
FE,B2,n (λ).

Lemma 31: Game G0 to G1

There exists a PPT adversary B1 such that

|AdvG0(A)− AdvG1(A)| ≤ Adv
one-yy-IND
MIFE,B1

(λ).

90 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Proof of Lemma 31. In game G1, which is described in Figure 4.5, we replace Enc(pk, eki, xj,0
i) =

Enc(pk, eki, x1,0
i + (xj,0

i − x1,0
i)) with Enc(pk, eki, x1,1

i + (xj,0
i − x1,0

i)) for all i ∈ [n], j ∈ [Qi].
This is justified by the following properties:

• one-yy-IND security of MIFE ;

• the fact Enc′ is linearly homomorphic. Namely, for all i ∈ [n], given Enc′(gpk′, ek′i, x1,β
i),

xj,0
i − x1,0

i and gpk′, we can create a fresh encryption Enc′(gpk′, ek′i, x1,β
i + xj,0

i − x1,0
i)

(corresponding to challenge ciphertexts in slots i in game Gβ).

The adversary B1 proceeds as follows.

-Simulation of pk:

In the adaptive variant, i.e. yy = AD, B receives the set CS ⊆ [n] from A, sends it to its own
experiment, receives a public key which it forwards to A.

In the selective variant, i.e. yy = SEL, it receives the challenge {xj,b
i }i∈[n],j∈[Qi],b∈{0,1}, and

the set CS ⊆ [n] from A. It sends the pair of vectors {x1,b
i }i∈I,b∈{0,1} as its selective challenge

to its experiment, where I ⊆ [n] is the set of indices i ∈ [n] for which Qi > 0. It gets back pk,
which it forwards to A, and the challenge ciphertexts {cti}i∈I , where cti = Enc(pk, eki, x1,β

1),
for β ∈ {0, 1}, when B1 is interacting with the experiment SEL-INDMIFEβ (1λ,B1), which is the
selective variant of AD-INDMIFEβ (1λ,B1) from Definition 23.

-Simulation of OEnc(i, (xj,0
i , xj,1

i)):

In the adaptive variant, if j = 1, that is, it is the first query for slot i ∈ [n], then B1 queries
its own oracle to get cti := Enc(pk, eki, x1,β), where β ∈ {0, 1}, depending on the experiment
B1 is interacting with. If j > 1, B1 uses the fact that the single-input inner-product scheme is
linearly homomorphic to generate all the remaining ciphertexts ct

j
i for i ∈ I, j ∈ {2, . . . , Qi}

by combining cti = Enc(pk, eki, x1,β
i) = Enc′(gpk′, ek′i, x1,β

i ‖zi) with the vector (xj,0
i − x1,0

i ‖0)
to obtain Enc′(gpk′, ek′i, x1,β

i + xj,0
i − x1,0

i ‖zi) = Enc(eki, x1,β
i + xj,0

i − x1,0
i) which matches

the challenge ciphertexts in Game Gβ. Note that this can be done using gpk′. B1 returns
{ct

j
i}i∈[n],j∈[Qi] to A.
In the selective variant, the same thing happens, except queries to OEnc are performed

beforehand.

-Simulation of OKeygen(y1‖ · · · ‖yn):

B1 simply uses its own secret key generation oracle on input y1‖ · · · ‖yn and forwards the
answer to A.

Finally, B1 forwards the output α of A to its own experiment. It is clear that for all
β ∈ {0, 1}, when B1 interacts with one-SEL-INDMIFEβ , it simulates the game Gβ to A.
Therefore,

Adv
one-yy-IND
MIFE,B1

(λ) =
∣∣∣Pr

[
one-yy-INDMIFE0 (1λ,B1) = 1

]
− Pr

[
one-yy-INDMIFE1 (1λ,B1) = 1

]∣∣∣ =

|AdvG0(A)− AdvG1(A)|.

Lemma 32: Game G1 to G2

4.1 Selectively-Secure, Private-Key MIFE for Inner Products 91

There exists a PPT adversary B2 such that

|AdvG1(A)− AdvG2(A)| ≤ Adv
many-yy-IND
FE,B2,n (λ).

Proof of Lemma 32. In Game G2, which is described in Figure 4.5, we replace Enc(gpk′, ek′i, x1,1
i +

(xj,0
i − x1,0

i) ‖zi) with Enc(gpk′, ek′i, x1,1
i + (xj,1

i − x1,1
i) ‖zi) = Enc(gpk′, ek′i, xj,1

i ‖zi), for all
i ∈ [n], j ∈ [Qi]. This follows from the many-yy-IND security of FE for n instances, which we
can use since for each key query y1‖ . . . ‖yn and all r, z, we have

〈x1,1
i + xj,0

i − x1,0
i ‖z, yi‖r〉 = 〈x1,1

i + xj,1
i − x1,1

i ‖z, yi‖r〉.

The latter is equivalent to 〈xj,0
i −x1,0

i , yi〉 = 〈xj,1
i −x1,1

i , yi〉, which follows from the restriction
imposed by the security game (see Remark 7).

We build a PPT adversary B2 such that:

|AdvG1(A)− AdvG2(A)| ≤ Adv
many-yy-IND
FE,B1,n (λ).

Adversary B2 proceeds as follows.
First, B2 samples zi ← Zk

p for all i ∈ [n]. Then, it simulates all challenge ciphertexts ct
j
i

using its own encryption oracle on input (i, (xj,0
i ‖zi, xj,1

i ‖zi)). It simulates all decryption keys
dky1‖···‖yn

by first sampling r ←R Zk
p, and setting di as the output of its own decryption key

oracle on input (i, yi‖r). It returns dky1‖···‖yn
:= ({[di]2}i∈[n], [r]2, [

∑
i〈zi, r〉]T).

Finally, B2 forwards the outputs α of A to its own experiment. It is clear that for all
β ∈ {0, 1}, when B2 interacts with many-yy-INDMIFEβ , it simulates the game G1+β to A.
Therefore,

Adv
many-yy-IND
FE,B2,n (λ) =

∣∣∣Pr
[
many-yy-INDFE0 (1λ, 1n,B2) = 1

]
− Pr

[
many-yy-INDFE1 (1λ, 1n,B2) = 1

]∣∣∣ =

|AdvG1(A)− AdvG2(A)|.

Putting everything together

In Figure 4.6 we spell out the details of the scheme in the previous section with a concrete
instantiation of the underlying single-input inner-product scheme, whose one-SEL-SIM security
is proven under the Dk-MDDH assumption, which is provided for completeness in Section 2.6.1.

92 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Setup(1λ, F m,X,Y
n):

PG := (G1,G2, p, P1, P2, e) ←R PGGen(1λ), A ←R Dk(p). For all i ∈ [n]: Wi ←R

Z
m×(k+1)
p , Vi ←R Z

k×(k+1)
p , zi ←R Zk

p, eki := (zi, [WiA]1, [ViA]1), pk := (PG, [A]1),
msk := {Wi, Vi, zi}i∈[n]. Return (pk, msk, (eki)i∈[n]).

Enc(pk, eki, xi):

si ←R Zk
p, return




−Asi

xi + WiAsi

zi + ViAsi




1

.

KeyGen(msk, y1‖ · · · ‖yn):

r←R Zk
p. For all i ∈ [n]: di :=




W⊤
i yi + Vir(

yi

r

)

, z := 〈z1 + · · ·+ zn, r〉

Return
(
{[di]2}i∈[n], [r]2, [z]T

)

Dec
((
{[di]2}i∈[n], [r]2, [z]T

)
, {[ci]1}i∈[n]

)
:

[d]T :=
∑

i e([ci]⊤1 , [di]2)− [z]T
Return the discrete log of [d]T .

Figure 4.6: Our private-key MIFE scheme for the functionality F m,X,Y
n , which is proven many-SEL-

IND-static in Corollary 2, and many-AD-IND secure in Theorem 51. Both rely on the Dk(p)-MDDH
assumption in G1 and G2.

4.2 Achieving Adaptive Security 93

Achieving Adaptive Security

In this section, we prove that MIFE from Figure 4.6 is many-AD-IND-static under Dk(p)-
MDDH assumption in G1 and G2. That is, our scheme is secure with many challenge cipher-
texts, chosen adaptively by the adversary, and handles static corruptions of input slots (see
Definition 23).

Security. The security proof proceeds in two steps, similarly than the many-SEL-IND se-
curity proof in Section 4.1. First, we show in Theorem 11 that the MIFE in Figure 4.6 is
one-AD-IND-static secure, that is, it is adaptively secure when there is only a single challenge
ciphertext, and handles static corruption of input slots.

Then, using Theorem 10 (many-yy-IND security of FE & one-yy-IND security ofMIFE ⇒
many-yy-IND ofMIFE) together with Theorem 11 (one-AD-IND security ofMIFE) and the
many-AD-IND security of the underlying FE (proven in Theorem 4), we obtain many-AD-IND
security of MIFE (Corollary 3)

Theorem 11: one-AD-IND-static security of MIFE

Suppose the Dk(p)-MDDH assumption holds in G1 and G2. Then, the multi-input FE in
Figure 4.6 is one-AD-IND-static secure.

That is, we show that our multi-input FE is adaptively secure when there is only a single
challenge ciphertext.

Corollary 3: many-AD-IND-static security of MIFE

Suppose the Dk(p)-MDDH assumption holds in G1 and G2. Then, the multi-input FE in
Figure 4.6 is many-AD-IND-static secure.

94
C

hapter
4.

M
ulti-Input

Inner-P
roduct

Functional
E

ncryption
from

P
airings

Game ci c′
i c′′

i di: z: justification/remark reference

G0,β Asi Wici + xβ
i Vici + zi W⊤

i yi + V⊤
i r 〈z1 + . . . + zn, r〉

one-AD-IND-static

security game
Definition 23

G1,β Asi + u Wici + xβ
i Vici + zi W⊤

i yi + V⊤
i r 〈z1 + . . . + zn, r〉 Dk-MDDH in G1 Lemma 33

G2,β Asi + u Wici + xβ
i Vici W⊤

i yi + V⊤
i r− a⊥〈zi, r〉 〈z1 + . . . + zn, r〉 inf. theoretic Lemma 34

G3,β Asi + u Wici + xβ
i Vici

If i ∈ HS: W⊤

i yi + V⊤
i r− a⊥z̃i

If i ∈ CS: W⊤

i yi + V⊤
i r− a⊥〈zi, r〉

∑
i∈CS〈zi, r〉+

∑
i∈HS z̃i Dk-MDDH in G2 Lemma 35

G⋆
3,β Asi + u Wici + xβ

i Vici

If i ∈ HS: W⊤

i yi + V⊤
i r− a⊥z̃i

If i ∈ CS: W⊤

i yi + V⊤
i r− a⊥〈zi, r〉

∑
i∈CS〈zi, r〉+

∑
i∈HS z̃i selective variant Lemma 36

Figure 4.7: Sequence of games for the proof of Theorem 11. Here, for any slot i ∈ [n], ([−ci]1, [c′
i]1, [c′′

i]1) is the challenge ciphertext computed by Enc(i, x0
i , x1

i);
[di]2 and [z]T are part of the sky1,‖···‖yn

computed by OKeygen(y1‖ · · · ‖yn). We use u←R Zk+1
q \ Span(A) and a⊥ ←R Zk+1

q such that A⊤a⊥ = 0 and u⊤a⊥ = 1.
To analyze the games G3,β , we consider the selective variant of these games: G⋆

3,β . We prove using an information-theoretic argument that G⋆
3,0 and G⋆

3,1 are
identically distributed. Using a guessing argument, we prove the same holds for the adaptive games G3,0 and G3,1.

4.2 Achieving Adaptive Security 95

Games G0,β , G1,β , G2,β , G3,β , G⋆
3,β :

CS ⊆ [n]← A(1λ, F m,X,Y
n), {xb

i}i∈HS ← A(1λ, F m,X,Y
n)

PG ← PGGen(1λ), A←R Dk(p), pk := (PG, [A]1)

u←R Zk+1
p \ Span(A), a⊥ ←R Zk+1

p s.t. A⊤a⊥ = 0 and u⊤a⊥ = 1

For all i ∈ [n]: Wi ←R Z
m×(k+1)
p , Vi ←R Z

k×(k+1)
p , zi ←R Zk

p, eki := (zi, [WiA]1, [ViA]1),

For all i ∈ HS, cti := OEnc(i, (x0
i , x1

i))

α← AOKeygen(·),OEnc(·,·)
(

pk, {cti}i∈HS , {eki}i∈CS

)

Output α.

OEnc(i, (x0
i , x1

i)): G0,β , G1,β , G2,β ,G3,β , G⋆
3,β

If i ∈ HS, return ⊥. si ←R Zk
p; ci := Asi + u , c′

i := Wici + xβ
i

c′′
i := Vici + zi; c′′

i := Vici .

Return



−ci

c′
i

c′′
i




OKeygen(y1‖ · · · ‖yn): G0,β ,G1,β , G2,β , G3,β ,G⋆
3,β

r←R Zk
p; ∀i ∈ HS : z̃i ←R Zp

∀i ∈ [n] : di := W⊤

i yi + V⊤

i r− a⊥〈zi, r〉

∀i ∈ HS : di := W⊤

i yi + V⊤

i r− a⊥z̃i

z := 〈z1 + . . . + zn, r〉; z :=
∑

i∈HS z̃i +
∑

i∈CS〈zi, r〉
Return

(
{[di]2, }i∈[n], [r]2, [z]T

)

Figure 4.8: Games for the proof of Theorem 11. In each procedure, the components inside a solid
(dotted, gray) frame are only present in the games marked by a solid (dotted, gray) frame. Here, CS
denotes the set of corrupted slots, and HS := [n] \ CS is the set of honest input slots. The oracle OEnc

can be queried at most once per input slot.

Proof of Theorem 11. Using Theorem 2, it is sufficient to prove one-AD-IND-zero-static (i.e.
the scheme is secure when no decryption keys are queried), and one-AD-IND-weak-static i.e. we
assume the adversary requests a challenge ciphertext for all slots i ∈ HS, where HS := [n]\CS
denotes the set of slots that are not corrupted) to obtain one-AD-IND-static security.

The one-AD-IND-zero-static security of MIFE follows directly from the one-AD-IND se-
curity for n instance of the underlying FE (recall that the construction from Figure 4.6 is
simply the implementation of the generic construction from Figure 4.1, with the concrete FE
from Section 2.6.1, which is one-AD-IND secure for n instance). In what follows, we prove
one-AD-IND-weak-static security of MIFE .

We proceed via a series of games described in Figure 4.8. The transitions are summarized
in Figure 4.7. Let A be a PPT adversary, and λ ∈ N be the security parameter. For game G,
we define AdvG(A) to be the probability that the game G outputs 1 when interacting with A.

Games G0,β, for β ∈ {0, 1}: are such that

Advone-AD-IND-static
MIFE,A (λ) = |AdvG0,0 − AdvG0,1 |,

according to Definition 23.

96 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Games G1,β, for β ∈ {0, 1}: we change the distribution of the vectors [ci]1 computed by
OEnc(i, ·, ·), for all queried i ∈ [n], using the Dk(p)-MDDH assumption. Namely, in Lemma 33,
we prove that there exists a PPT adversary B1,β such that:

AdvG0,β
(A)− AdvG1,β

(A) ≤ Adv
Dk(p)-mddh

G1,B1,β
(λ) +

1
p

.

Games G2,β, for β ∈ {0, 1}: here, for all slots i ∈ [n], we change the way the vectors [c′′i]1 and
[di]2 are computed, respectively, by OEnc(i, ·, ·) and OKeygen, using an information theoretic
argument. The point is to make it possible to simulate the G2 only knowing [zi]2 (and not
[zi]1), which will be useful later, to use the Uk(p)-MDDH assumption on [zi]2, in G2. Namely,
we show in Lemma 34 that

AdvG1,β
(A) = AdvG2,β

(A).

Games G3,β, for β ∈ {0, 1}: we use the Dk(p)-MDDH assumption to switch simultaneously
for all i ∈ HS the values [〈zi, r〉]2 computed by OKeygen, to uniformly random values over G2.
Recall that HS ⊆ [n] denotes the set of honest (that is, non corrupted) input slots. This relies
on the fact that it is not necessary to know [zi]1 for i ∈ HS to simulate the games G2,β or G3,β.
Namely, in Lemma 35, we show that there exists a PPT adversary B3,β such that:

AdvG2,β
(A)− AdvG3,β

(A) ≤ Adv
Uk-mddh

G2,B3,β
(λ) +

1
p− 1

.

At this point, we show that AdvG3,0(A) = AdvG3,1(A) in three steps. First, we consider the
selective variant of game G3,β , called G⋆

3,β, where the adversary must commit to its challenge
(x0

i , x1
i)i∈HS before receiving pk or making any decryption key queries, where HS ⊆ [n] de-

notes the set of input slots which are not corrupted. Further encryption queries can be made
adaptively for slots i ∈ CS. By a guessing argument, we show in Lemma 36 that there exists
PPT adversary A⋆ such that

AdvG3,β
(A) = (X + 1)2hm · AdvG⋆

3,β
(A⋆),

where h denotes the size of HS. Then we prove in Lemma 37 that the game G⋆
3,0 is identical

to the game G⋆
3,1 using a statistical argument, which is only true in the selective setting, and

using the restrictions on the queries imposed by the security game. Namely, we show that for
all adversaries A′:

AdvG⋆
3,0

(A′) = AdvG⋆
3,1

(A′).
Putting everything together, we obtain:

Advone-AD-IND-static
MIFE,A (λ) ≤ 2 · Adv

Dk(p)-mddh

G1,B1
(λ) + 2 · Adv

Uk(p)-mddh

G2,B2
(λ) +

2
p

.

Note that the Uk(p)-MDDH is implied by Dk(p)-MDDH for any matrix distribution Dk(p)
according to Lemma 3. In particular, it is implied by the well-known k-Lin assumption.

Lemma 33: Game G0,β to G1,β

There exists a PPT adversary B1,β such that:

AdvG0,β
(A)− AdvG1,β

(A) ≤ Adv
Dk-mddh

G1,B1,β
(λ) +

1
p

.

4.2 Achieving Adaptive Security 97

Proof of Lemma 33. Here, we switch ([A]1, [Asi]1) computed by OEnc(i, ·, ·) to ([A]1, [Asi +
u]1) simultaneously for all queried i ∈ [n], where A ←R Dk(p), u ←R Zk+1

p \ Span(A),
si ←R Zk

p.
This change is justified by the facts that:

1. The distributions: {si}i∈[n] and {si +s}i∈[n], where s←R Zk
p and for all i ∈ [n], si ←R Zk

p,
are identically distributed.

2. By the Dk-MDDH assumption, we can switch ([A]1, [As]1) to ([A]1, [u]1), where A ←R

Dk, s←R Zk
p, and u←R Zk+1

p .

3. The uniform distribution over Zk+1
p and Zk+1

p \ Span(A) are 1
p -close, for all A of rank k.

Combining these three facts, we obtain a PPT adversary B1,β such that

AdvG0,β
(A)− AdvG1,β

(A) ≤ Adv
Dk(p)-mddh

G1,B1,β
(λ) +

1
p

.

Now we describe the adversary B1,β . Upon receiving an MDDH challenge (PG, [A]1, [h]1),

B1 picks Wi ←R Z
m×(k+1)
p , Vi ←R Z

k×(k+1)
p , and zi ←R Zk

p for all i ∈ [n], thanks to which
it can compute and send (pk, {eki}i∈CS) to A, and simulate the oracle OKeygen, as described
in Figure 4.8. To simulate OEnc(i, ·, ·), B1,β picks si ←R Zk

p, sets [ci]1 := [A]1si + [h]1, and
computes the rest of the challenge ciphertext from [ci]1. Note that when [h]1 is a real MDDH
challenge, this simulates game G0,β , whereas it simulates G1,β when [h]1 is uniformly random
over Gk+1

1 (within 1
p statistical distance).

Lemma 34: Game G1,β to G2,β

AdvG1,β
(A) = AdvG2,β

(A).

Proof of Lemma 34. We argue that games G1,β and G2,β are the same, using the fact that for

all A ∈ Z
(k+1)×k
p , u ∈ Zk+1

p \Span(A), and all a⊥ ∈ Zk+1
p such that A⊤a⊥ = 0 and (a⊥)⊤u = 1,

the following distributions are identical:

{Vi, zi}i∈[n] and {Vi − zi(a⊥)⊤ , zi}i∈[n],

where for all i ∈ [n], Vi ←R Z
k×(k+1)
p , and zi ←R Zk

p. This is the case because the matrices Vi

are picked uniformly, independently of the vectors zi. This way, we obtain

di := W⊤
i yi +

(
V⊤

i − a⊥z⊤
i

)
r = W⊤

i yi + V⊤
i r− a⊥z⊤

i r

and

[c′′i]1 :=
[(

Vi − zi(a⊥)⊤
)(

Asi + u
)]

1
+ [zi]1

=
[
Vi
(
Asi + u

)]
1
−
[
zi(a⊥)⊤u

]
1

+ [zi]1

=
[
Vi
(
Asi + u

)]
1

where we use the fact that (a⊥)⊤u = 1 is the last equality, and the fact that A⊤a⊥ = 0 in the
penultimate equality. This corresponds to game G2,β.

98 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

Lemma 35: Game G2,β to G3,β

There exists a PPT adversary B3,β such that:

AdvG2,β
(A)− AdvG3,β

(A) ≤ Adv
Uk(p)-mddh

G2,B3,β
(λ) +

1
p− 1

.

Proof of Lemma 35. Here, we switch {[r]2, [〈zi, r〉]2}i∈HS used by OKeygen to {[r]2, [z̃i]2}i∈HS ,
where for all i ∈ [n], zi ←R Zk

p, z̃1, . . . , z̃n ←R Zp and r←R Zk
p. This is justified by the fact that

{[r]2, [〈zi, r〉]2}i∈HS is identically distributed to [Ur]2 where U ←R Uk+h,k, where h denotes
the size of HS (wlog. we assume that the upper k rows of U are full rank), which is indis-
tinguishable from a uniformly random vector over Gk+h

2 , that is, of the form: {[r]2, [z̃i]2}i∈HS ,
according to the Uk+h,k(p)-MDDH assumption. To do the switch simultaneously for all calls
to OKeygen, that is, to switch {[rj]2, [〈zi, rj〉]2}i∈HS,j∈[Q0] to {[rj]2, [z̃j

i]2}i∈HS,j∈[Q0], where Q0

denotes the number of calls to OKeygen, and for all j ∈ [Q0], rj ←R Zk
p, and z̃j

i ←R Zp for all
i ∈ HS, we use the Q0-fold Uk+h,k(p)-MDDH assumption. Namely, we build a PPT adversary
B′3,β such that:

AdvG2,β
(A)− AdvG3,β

(A) ≤ Adv
Q0- Uk+h,k(p)-mddh

G2,B′
3,β

(λ).

This, together with Lemma 3 (Uk(p)-MDDH⇒ Q0-fold Uk+h,k(p)-MDDH), implies the lemma.
Adversary B′3,β proceeds as follows.

-Simulation of (pk, {eki}i∈CS): Upon receiving an Q0-fold Uk+h,k(p)-MDDH challenge
(
PG, [U]2 ∈ G

(k+h)×k
2 ,

[
h1‖ · · · ‖hQ0

]
2
∈ G

(k+n)×Q0

2

)
,

B′3,β samples A←R Dk(p), u←R Zk+1
p \ Span(A), a⊥ ←R Zk+1

p s.t. A⊤a⊥ = 0 and u⊤a⊥ = 1,

for all i ∈ [n]: Wi ←R Z
m×(k+1)
p , Vi ←R Z

k×(k+1)
p . For all i ∈ CS: zi ←R Zk

p. It returns
pk := (PG, [A]1), {eki := (zi, [WiA]1, [ViA]1)}i∈CS) to A.

-Simulation of Enc(i, x0
i , x1

i):

B′3,β picks si ←R Zk
p, computes [ci]1 := [Asi]1 + [u]1, [c′i] := Wi[ci]1 + [xβ

i]1, [c′′i]1 := Vi[ci]1,

and returns



−ci

c′i
c′′i




1

to A.

-Simulation of OKeygen(y1‖ · · · ‖yn):

On the j’th query y1‖ · · · ‖yn, B′3,β sets [r]2 := [hj]2, where hj ∈ Zk
p denotes the k-upper

components of hj ∈ Zk+h
p (recall that h denotes the size of HS). For each i ∈ HS, it uses

one of the h lowest components of hj , call it hj
i (a different one is used for each i ∈ HS),

to compute [di]2 := [W⊤
i yi]2 + V⊤

i [hj]2 − a⊥[hj
i]2. For each i ∈ CS, it computes [di]2 :=

[W⊤
i yi]2 + V⊤

i [hj]2 − a⊥[〈zi, hj〉]2.
Note that when

[
h1‖ · · · ‖hQ0

]
2

is a real MDDH challenge, B′3,β simulate the game G2,β ,

whereas it simulates G3,β when
[
h1‖ · · · ‖hQ0

]
2

is uniformly random over G
(k+h)×Q0

2 .

Lemma 36: Game G3,β to G⋆
3,β

4.2 Achieving Adaptive Security 99

There exists a PPT adversary A⋆ such that:

AdvG3,β
(A) = (X + 1)2hm · AdvG⋆

3,β
(A⋆),

where h denotes the size of HS ⊆ [n], the set of honest input slots.

Proof of Lemma 36. Upon receiving a set CS ⊆ [n] from A, A⋆ guesses the challenge by picking
random: (z0

i , z1
i)i∈HS ←R [0, X]2hm, which it sends, together with CS, to the game G⋆

3,β , which
is a selective variant of game G3,β . Then it receives a public key pk and ciphertexts {cti}i∈HS .
Whenever A queries OKeygen, A⋆ forwards the query to its own oracle, and gives back the
answer to A. When A calls OEnc(i, x0

i , x1
i), if i ∈ CS, then A⋆ queries its own encryption

oracle on (i, x0
i , x1

i) and forwards the answer to A. If i ∈ HS, then A⋆ verifies its guess was
correct, that is, whether (x0

i , x1
i) = (z0

i , z1
i). If the guess is incorrect, A⋆ ends the simulation,

and sends α := 0 to the game G⋆
3,β . Otherwise, it returns cti to A, and keeps answering A’s

queries as explained. Finally (if it didn’t end the simulation before the end), it forwards A’s
output α to the game G⋆

3,β .
WhenA⋆ guesses correctly, it simulates A’s view perfectly. When it fails to guess, it outputs

α := 0. Thus, the probability that A⋆ outputs 1 in G⋆
3,β is exactly (X +1)−2hm ·AdvG3,β

(A).

Lemma 37: Game G⋆
3,0 to G⋆

3,1

For all adversaries A′, we have:

AdvG⋆
3,0

(A′) = AdvG⋆
3,1

(A′).

Proof of Lemma 37. We show that game G⋆
3,0 and G⋆

3,1 are perfectly indistinguishable, using an
information theoretic argument that crucially relies on the fact that these games are selective,
and using the restrictions on the oracle queries imposed by the security game.

This proof is similar to the proof of Lemma 30 for the one-SEL-IND-static security of the
MIFE in Figure 4.1.

Namely, We show that G⋆
3,β does not depend on β, using the fact that for all y1‖ · · · ‖yn ∈

(Zm
p)n, for all {xb

i ∈ [0, X]m}i∈HS,b∈{0,1}, the following are identically distributed:

{Wi, z̃i}i∈HS and {Wi − xβ
i (a⊥)⊤ , z̃i − 〈xβ

i , yi〉 }i∈HS ,

where z̃i ←R Zp for all i ∈ HS, and a⊥ ←R Zk+1
p such that A⊤a⊥ = 0 and u⊤a⊥ = 1.

For each query y1‖ · · · ‖yn, OKeygen(msk, y1‖ · · · ‖yn) picks values z̃i ←R Zp and Wi ←R

Z
m×(k+1)
p for i ∈ HS that are independent of y1‖ · · · ‖yn and the challenge {xb

i ∈ [0, X]m}i∈HS,b∈{0,1}

(note that here we crucially rely on the fact the games G⋆
3,0 and G⋆

3,1 are selective here), there-

fore, using the previous fact, we can switch z̃i to z̃i− 〈xβ
i , yi〉 and Wi to Wi− xβ

i (a⊥)⊤ , for
all i ∈ HS, without changing the distribution of the game.

This way, for all i ∈ HS, OEnc(i, x0
i , x1

i) computes:

c′i := (Wi − xβ
i (a⊥)⊤)ci + xβ

i = (Wi − xβ
i (a⊥)⊤)(Asi + u) + xβ

i = Wici,

using the facts that A⊤a⊥ = 0 and u⊤a⊥ = 1. That is, OEnc(i, x0
i , x1

i) is independent of β, for
all i ∈ HS. Moreover, for all i ∈ CS ∩ I, by definition of the security game, we have x0

i = x1
i .

Thus, OEnc(i, x0
i , x1

i) is independent of β, for all i ∈ [n].
Note that, for all i ∈ HS, OKeygen(msk, y1‖ · · · ‖yn) computes

di := (Wi − xβ
i (a⊥)⊤)⊤yi + V⊤i r− a⊥

(
z̃i + 〈xβ

i , yi〉
)

= W⊤
i yi + V⊤i r− a⊥z̃i,

100 Chapter 4. Multi-Input Inner-Product Functional Encryption from Pairings

which does not depend on β.
Finally, OKeygen also computes:

z :=
∑

i∈CS

〈zi, r〉+
∑

i∈HS

z̃i −
∑

i∈HS〈xβ
i , yi〉 .

Finally, by definition of the security game, we have:
∑

i∈HS〈x0
i , yi〉 =

∑
i∈HS〈x1

i , yi〉, by taking
x0

i = x1
i = 0 for all i ∈ CS in Condition 1 from Definition 23. Thus, G⋆

3,β is independent of
β.

Remark 12: On adaptive security

To achieve adaptive security, we split the selective, computational argument used for
the proof of Theorem 9, in two steps: first, we use an adaptive, computational argument,
that does not involve the challenges {xb

i}i∈[n],b{0,1} (this corresponds to the transition from
game G0,β to G3,β). Then, we prove security of game G3,β , using a selective argument,
which involves the challenges {xb

i}i∈[n],b{0,1}, but relies on perfect indistinguishability.
That is, we prove that G3,β is perfectly secure, by first proving the perfect security of its
selective variant, G⋆

3,β , and using a guessing argument to obtain security of the adaptive
game G3,β . Guessing incurs an exponential security loss, which we can afford, since it is
multiplied by a zero term. The proof of Theorem 9 essentially does the two steps at once,
which prevents using the same guessing argument (since in that case, the exponential
term would be multiplied by the computational advantage).

Chapter 5

Multi-Input Inner-Product

Functional Encryption without

Pairings

Overview of our construction.

In this chapter we give a (private-key) MIFE scheme for inner products based on a variety of
assumptions, notably without the need of bilinear maps, and where decryption works efficiently,
even for messages of super-polynomial size. We achieve this result by proposing a generic
construction of MIFE from any single-input FE (for inner products) in which the encryption
algorithm is linearly-homomorphic. Our transformation is surprisingly simple, general and
efficient. In particular, it does not require pairings (as in the case of the multi-input inner-
product FE from [AGRW17], presented in Chapter 4), and it can be instantiated with all
known single-input functional encryption schemes (e.g., [ABDP15, ABDP16, ALS16]). This
allows us to obtain new MIFE for inner products from plain DDH, composite residuosity,
and LWE. Beyond the obvious advantage of enlarging the set of assumptions on which MIFE
can be based, this result yields schemes that can be used with a much larger message space.
Indeed, dropping the bilinear groups requirement allows us to employ schemes where the
decryption time is polynomial, rather than exponential, in the message bit size. From a more
theoretical perspective, our results also show that, contrary to what was previously conjectured
[AGRW17], MIFE for inner product does not need any (qualitatively) stronger assumption than
their single-input counterpart.

This result has been published in [ACF+18]. The novelty in this thesis is that security is
guaranteed even when some encryption keys are corrupted. Namely, each user i ∈ [n] receives
a (private) encryption key eki. Even a collusion of eki for some malicious users i cannot break
security for the encryption of other slots. This property is obtained without modifying the
scheme from [ACF+18], but requires a novel security proof. It is desirable for practical use
case of MIFE to assume no particular trust between different users, since the setting already
assumes these users do not cooperate or communicate while performing encryption (this would
corresponds to the single-input setting).

Our solution, in more detail. Informally, the scheme from the previous chapter builds
upon a two-step decryption blueprint. The ciphertexts ct1 = Enc(x1), . . . , ctn = Enc(xn)
(corresponding to slots 1, . . . , n) are all created using different instances of a single-input FE.
Decryption is performed in two stages. One first decrypts each single cti separately using the
secret key dkyi of the underlying single-input FE, and then the outputs of these decryptions
are added up to get the final result.

The main technical challenge of this approach is that the stage one of the above decryption

101

102 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

algorithm leaks information on each partial inner product 〈xi, yi〉. To avoid this leakage, their
idea is to let source i encrypt its plaintext vector xi augmented with some fixed (random) value
ui, which is part of the secret key. Moreover, dkyi are built by running the single-input FE key
generation algorithm on input yi||r, i.e., the vector yi augmented with fresh randomness r.

By these modifications, and skipping many technical details, stage-one decryption then
consists of using pairings to compute, in GT , the values [〈xi, yi〉+ uir]T for every slot i. From
these quantities, the result [〈x, y〉]T is obtained as

n∏

i=1

[〈xi, yi〉+ uir]T − [
n∑

i=1

uir]T

which can be easily computed if [
∑n

i=1 uir]T is included in the secret key.
Intuitively, the scheme is secure as the quantities [uir]T are all pseudo-random (under the

DDH assumption) and thus hide all the partial information [〈xi, yi〉+ uir]T may leak. Notice
that, in order for this argument to go through, it is crucial that the quantities [〈xi, yi〉+ uir]T
are all encoded in the exponent, and thus decoding is possible only for small norm exponents.
Furthermore, this technique seems to inherently require pairings, as both ui and r have to
remain hidden while allowing to compute an encoding of their product at decryption time.
This is why the possibility of a scheme without pairings was considered as “quite surprising”
in [AGRW17].

We overcome these difficulties via a new FE to MIFE transform, which manages to avoid
leakage in a much simpler and efficient way. Our transformation works in two steps. First,
we consider a simplified scheme where only one ciphertext query is allowed and messages live
in the ring ZL, for some integer L. In this setting, we build the following multi-input scheme.
For each slot i the (master) secret key for slot i consists of one random vector ui ∈ Zm

L .
Encrypting xi merely consists in computing ci = xi + ui mod L. The secret key for function
y = (y1‖ . . . ‖yn), is just zy =

∑n
i=1〈ui, yi〉 mod L. To decrypt, one computes

〈x, y〉 mod L = 〈(c1, . . . , cn), y〉 − zy mod L

Security comes from the fact that, if only one ciphertext query is allowed, the above can be
seen as the functional encryption equivalent of the one-time pad1.

Next, to guarantee security in the more challenging setting where many ciphertext queries
are allowed, we just add a layer of (functional) encryption on top of the above one-time
encryption. More specifically, we encrypt each ci using a FE (supporting inner products)
that is both linearly homomorphic and whose message space is compatible with L. So,
given ciphertexts {cti = Enc(ci)} and secret key dky = ({dkyi}i, zy), one can first obtain
{〈ci, yi〉 = Dec(cti, dkyi)}, and then extract the result as 〈x, y〉 =

∑n
i=1〈ci, yi〉 − 〈u, y〉.

Our transformation actually comes in two flavors: the first one addresses the case where
the underlying FE computes inner products over some finite ring ZL; the second one instead
considers FE schemes that compute bounded-norm inner products over the integers. In both
cases the transformations are generic enough to be instantiated with known single-input FE
schemes for inner products. This gives us new MIFE relying on plain DDH [ABDP15], LWE
[ALS16] and Decisional Composite Residuosity [ALS16, ABDP16]. Moreover, the proposed
transform is security-preserving in the sense that, if the underlying FE achieves adaptive
security, so does our resulting MIFE.

From Single to Multi-Input FE for Inner Product

In this section, we give a generic construction of MIFE for inner product from any single-input
FE for the same functionality. More precisely, we show two transformations: the first one

1We remark that a similar information theoretic construction was put forward by Wee in [Wee17], as a
warm-up scheme towards an FE for inner products achieving simulation security.

5.1 From Single to Multi-Input FE for Inner Product 103

Setupot(1λ, F m,L
n):

For all i ∈ [n], ui ←R Zm
L , eki := ui,

pk = L, msk := {ui}i∈[n]

Return (pk, msk, (eki)i∈[n]).

Encot(pk, eki, xi):
Return xi + ui mod L.

KeyGenot(pk, msk, (y1‖ · · · ‖yn)):
z :=

∑
i∈[n]〈ui, yi〉 mod L

Return dky1‖···‖yn
:= (y1‖ · · · ‖yn, z).

Decot
(
pk, dky1‖···‖yn

, ct1, . . . , ctn):

Parse dky1‖···‖yn
:= (y1‖ · · · ‖yn, z).

Return
∑n

i=1〈cti, yi〉 − z mod L

Figure 5.1: Private-key, information theoretically secure, multi-input FE schemeMIFEot = (Setupot,
Encot, KeyGenot, Decot) for the class F m,L

n .

addresses FE schemes that compute the inner product functionality over a finite ring ZL for
some integer L, while the second transformation addresses FE schemes for bounded-norm inner
product. The two transformations are almost the same, and the only difference is that in the
case of bounded-norm inner product, we require additional structural properties on the single-
input FE. Yet we stress that these properties are satisfied by all existing constructions. Both
our constructions rely on a simple MIFE scheme that is one-AD-IND secure unconditionally.
In particular, our constructions show how to use single-input FE in order to bootstrap the
information-theoretic MIFE from one-time to many-time security.

Information-Theoretic MIFE with One-Time Security

Here we present the multi-input scheme MIFEot for inner product over ZL, that is, for the
set of functionalities {F m,L

n }n∈N defined as F m,L
n : Kn × X1 × · · · × Xn → Z, with Kn := Znm,

for all i ∈ [n], Xi := Zm, Z := ZL, such that for any (y1‖ · · · ‖yn) ∈ Kn, xi ∈ Xi, we have:

F m,L
n

(
(y1‖ · · · ‖yn), x1, . . . , xn

)
=

n∑

i=1

〈xi, yi〉 mod L.

We prove its one-AD-IND security. The scheme is described in Figure 5.1.

Theorem 12: one-AD-IND security

The MIFE described in Figure 5.1 is one-AD-IND-weak secure. Namely, for any adversary
A, Advone-AD-IND-weak

MIFEot,A (λ) = 0.

Proof of Theorem 12. Let A be an adversary against the one-AD-IND security of the MIFE.
First, we use a guessing argument to build an adversary B such that:

Advone-AD-IND-weak
MIFE,A (λ) ≤ 2−n · L−2mn · Advone-SEL-IND-weak-static

MIFE,B (λ).

First, B samples CS ⊆ [n] uniformly at random among all subset of [n]. We denote
HS := [n] \ CS. Then, for all i ∈ HS, it samples (z1

i , z0
i) ←R Z2m

L , which is a guess of
the challenge ciphertexts. Then, B sends

(
CS, {zb

i}i∈HS,b∈{0,1}

)
to its own experiment, upon

which it receives (pk, {eki}i∈CS{cti}i∈HS), where for all i ∈ HS, cti := Enc(pk, eki, zβ
i), where

β ∈ {0, 1} corresponds to the experiment one-SEL-INDβ(1λ,A) the adversary B is interacting
with. It sends pk to A. For every query to OKeygen, B queries its own decryption key oracle
oracle on the same input, and returns the answer to A. For every query i ∈ [n] of A to
OCorrupt, B verifies its guess was correct, namely, that i ∈ CS. If not, B ends the simulation
and returns α = 0 to its experiment. For every query (i, x0

i , x1
i) to OEnc, B verifies its guess

is correct, namely, whether (i ∈ CS and x0
i = x1

i), or (x0
i , x1

i) = (z0
i , z1

i). If it is not the case,
B ends the simulation, and returns α = 0 to its own experiment. If this is case, B does the

104 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

following: if i ∈ CS, then it returns Enc(pk, eki, x0
i) to A (note that it can do so since it knows

eki for all i ∈ CS); if i /∈ CS, it returns cti to A. Finally (if the simulation didn’t end before),
B forwards A’s output α to its experiment.

When B’s guess is correct, then it simulates A’s view perfectly. The guess is correct with
probability at least 2−n · L−2mn. When the guess is incorrect, then B returns α = 0 to its
experiment. Thus, we obtain Advone-AD-IND-weak

MIFE,A (λ) ≤ 2−n ·L−2mn ·Advone-SEL-IND-weak-static
MIFE,B (λ).

It remains to prove that the MIFE presented in Figure 5.1 satisfies perfect one-SEL-IND
security, under static corruptions. Namely, for any adversary B,

Advone-SEL-IND-weak-static
MIFE,B (λ) = 0.

To do so, we introduce hybrid games Hβ(1λ,B) described in Figure 5.2. We prove that for
all β ∈ {0, 1}, Hβ(1λ,B) is identical to the experiment one-SEL-IND-weak-staticMIFEβ (1λ,

B) (this game is defined as many-AD-MIFEβ (1λ,B) from Definition 23, with the one, SEL,

weak, and static restrictions). This can be seen using the fact that for all {xβ
i ∈ Zm}i∈HS ,

where HS := [n] \ CS, the following distributions are identical: {ui mod L}i∈HS and {ui −
xβ

i mod L}i∈HS , with ui ←R Zm
L . Note that the independence of the xβ

i from the ui is only
true in the selective security game. We denote by I ⊆ [n] the set of input slots that is queried
by the adversary. We use the fact that for all i ∈ I ∩ CS, it must be that x0

i = x1
i . This is

implied by the definition of the security game, and the fact that HS ⊆ I, that is, every honest
slot is queried by the adversary, since we are only proving one-SEL-IND-weak-static security.
Finally, we show that B’s view in Hβ(1λ,B) is independent of β. Indeed, the only information
about β that leaks in this experiment is

∑
i∈HS〈xβ

i , yi〉. Moreover, by definition of the security
game, we have

∑
i∈HS〈x0

i , yi〉 =
∑

i∈HS〈x1
i , yi〉 (this follows by taking x0

i = x1
i = 0 for all

i ∈ CS in Condition 1 from Definition 23).

Hβ(1λ,B):(
CS, {xb

i}i∈I⊆[n],b∈{0,1}

)
← B(1λ, F m,L

n)
For all i ∈ [n]: ui ←R Zm

L

For all i ∈ CS, eki := ui.
For all i ∈ HS, cti := ui.
For all i ∈ I ∩ CS: cti := ui + x0

i

α← BOKeygen(·),OCorrupt(·)(pk, {eki}i∈CS , {cti}i∈I)
Output α

OKeygen(y):

Return
∑

i∈[n]〈ui, yi〉 −
∑

i∈HS〈x
β
i , yi〉 mod L

Figure 5.2: Experiments for the proof of Theorem 12. Note that HS ⊆ I, where I denotes the
set of input slots that are queried by A.

Remark 13: Linear homomorphism

We use the fact that Encot is linearly homomorphic, that is, for all i ∈ [n], xi, x′i ∈ Zm,
Encot(pk, eki, xi)+x′i mod L = Encot(pk, eki, xi +x′i), with probability 1 over the choice of
(pk, (eki)i∈[n]) ← Setupot(1λ, F m,L

n). This property will be used when using the one-time
scheme MIFEot from Figure 5.1 as a building block to obtain a full-fledged many-AD-
IND MIFE.

Our Transformation for Inner Product over ZL

We present our multi-input schemeMIFE for the class F m,L
n in Figure 5.3. The construction

relies on the one-time scheme MIFEot of Figure 5.1, and any single-input, public-key FE for

5.1 From Single to Multi-Input FE for Inner Product 105

the functionality F m,L
IP : K × X → Z, with K := Zm, X := Zm, Z := ZL, such that for any

y ∈ K, x ∈ X , we have:
F m,L

IP (y, x) = 〈x, y〉 mod L.

Setup(1λ, F m,L
n):

(pkot, mskot, {ekot
i }i∈[n]) ← Setupot(1λ, F m,L

n), gpk′ ← GSetup′(1λ, F m,L
IP). For all i ∈ [n],(

ek′
i, msk′

i

)
← Setup′(1λ, gpk′, F m,L

IP)
pk :=

(
pkot, gpk′, {ek′

i}i∈[n]

)
, msk :=

(
mskot, {msk′

i}i∈[n]

)
, for all i ∈ [n], eki := (ekot

i , ek′
i)

Return
(
pk, msk{eki}i∈[n]

)

Enc(pk, eki, xi):

wi := Encot(pkot, ekot
i , xi)

Return Enc′(gpk′, ek′
i, wi)

KeyGen(msk, y1‖ · · · ‖yn):

For all i ∈ [n], dk′
i ← KeyGen′(gpk′, msk′

i, yi), z := KeyGenot(pkot, mskot, y1‖ · · · ‖yn)
dky1‖···‖yn

:=
(
{dk′

i}i∈[n], z
)

Return dky1‖···‖yn

Dec
(
pk, dky1‖···‖yn

, ct1, . . . , ctn):

Parse dky1‖···‖yn
:= ({dk′

i}i∈[n], z). For all i ∈ [n], di := Dec′(gpk′, dk′
i, cti)

Return
∑

i∈[n] di − z mod L

Figure 5.3: Private-key multi-input FE scheme MIFE := (Setup, Enc, KeyGen, Dec) for the function-
ality F m,L

n from a public-key single-input FE FE := (Setup′, Enc′, KeyGen′, Dec′) for the functionality
F m,L

IP , and the one-time multi-input FE MIFEot = (Setupot, Encot, KeyGenot, Decot) for the functional-
ity F m,L

n from Figure 5.1.

Correctness of MIFE follows from the correctness properties of the single-input scheme
FE and the multi-input scheme MIFEot. Indeed, correctness of the former implies that, for
all i ∈ [n], di = 〈wi, yi〉 mod L, while correctness of MIFEot implies that

∑
i∈[n] di − z =

Decot(z, w1, . . . , wn) =
∑

i∈[n]〈xi, yi〉 mod L.

Theorem 13: many-AD-IND security

If FE is many-AD-IND secure, and MIFEot is one-AD-IND-weak secure, then MIFE
described in Figure 5.3 is many-AD-IND-secure.

Since the proof of the above theorem is almost the same as the one for the case of bounded-
norm inner product, we only provide an overview here, and defer to the proof of Theorem 14
for further details.

Proof overview. First, we use Theorem 2 which prove that many-AD-IND security follows
from many-AD-IND-weak and many-AD-IND-zero of MIFE , using an extra layer of sym-
metric encryption on top of the decryption keys (see Figure 2.1). The many-AD-IND-zero
of MIFE follows directly from the many-AD-IND security of FE for n instances (which is
implied by many-AD-IND security of FE for one instance, see Lemma 5). Thus, it remains to
prove many-AD-IND-weak security of MIFE .

To do so, we first switch encryptions of x1,0
1 , . . . , x1,0

n to those of x1,1
1 , . . . , x1,1

n , using the one-
AD-IND security ofMIFEot. For the remaining ciphertexts, we switch from an encryption of
xj,0

i = (xj,0
i −x1,0

i)+x1,0
i to that of (xj,0

i −x1,0
i)+x1,1

i . In this step we use the fact that one can

106 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

compute an encryption of Encot(u, i, (xj,0
i − x1,0

i) + x1,0
i) from an encryption Encot(u, i, x1,0

i),
because the encryption algorithm Encot ofMIFEot is linearly homomorphic (see Remark 13).
Finally, we use the many-AD-IND security of FE for n instance (which is implied by many-
AD-IND security of FE for one instance, see Lemma 5) to switch encryptions of

(x2,0
i − x1,0

i) + x1,1
i , . . . , (xQi,0

i − x1,0
i) + x1,1

i

to those of
(x2,1

i − x1,1
i) + x1,1

i , . . . , (xQi,1
i − x1,1

i) + x1,1
i .

Instantiations. The construction in Figure 5.3 can be instantiated using the single-input
public-key FE schemes from [ALS16] that are many-AD-IND-secure and allow for computing
inner products over a finite ring. Specifically, we obtain:

• A MIFE for inner product over Zp for a prime p, based on the LWE assumption. This is
obtained using the LWE-based scheme of Agrawal et al. [ALS16, Section 4.2].

• A MIFE for inner product over ZN where N is an RSA modulus, based on Paillier’s
Decisional Composite Residuosity assumption. This is obtained using the DCR-based
scheme of Agrawal et al. [ALS16, Section 5.2].

We note that since both these schemes in [ALS16] have a stateful key generation, our MIFE
inherits this stateful property. Stateless MIFE instantiations are obtained from the transfor-
mation in the next section.

Our Transformation for Inner Product over Z

Here we present our transformation for the case of bounded-norm inner product. In particular,
in Figure 5.4 we present a multi-input schemeMIFE for the set of functionalities {F m,X,Y

n }n∈N
defined as F m,X,Y

n : Kn×X1×· · ·×Xn → Z, with Kn := [0, Y]mn, for all i ∈ [n], Xi := [0, X]m,
Z := Z, such that for any (y1‖ · · · ‖yn) ∈ Kn, xi ∈ Xi, we have:

F m,X,Y
n

(
(y1‖ · · · ‖yn), x1, . . . , xn

)
=

n∑

i=1

〈xi, yi〉.

Our transformation builds upon the one-time schemeMIFEot of Figure 5.1, and a single-input,
public-key scheme FE for the class F m,3X,Y

IP .2 We require FE to satisfy two properties. The
first one, that we call two-step decryption, intuitively says that the FE decryption algorithm
works in two steps: the first step uses the decryption key to output an encoding of the result,
while the second step returns the actual result 〈x, y〉 provided that the bounds ‖x‖∞ < X,
‖y‖∞ < Y hold. The second property informally says that the FE encryption algorithm is
additively homomorphic.

We note that the two-step property also says that the encryption algorithm accepts inputs
x such that ‖x‖∞ > X, yet correctness is guaranteed as long as the encrypted inputs are
within the bound at the moment of invoking the second step of decryption.

Two-step decryption is formally defined as follows.

Property 1: Two-step decryption

An FE scheme FE = (GSetup, Setup, Enc, KeyGen, Dec) satisfies two-step decryption if it
admits PPT algorithms GSetup⋆, Dec1, Dec2 and an encoding function E such that:

1. For all λ, m, n, X, Y ∈ N, GSetup⋆(1λ, F m,X,Y
IP , 1n) outputs gpk which includes a

2The reason why we need 3X instead of X is due to maintain a correct distribution of the inputs in the
security proof.

5.1 From Single to Multi-Input FE for Inner Product 107

bound B ∈ N, and the description of a group G (with group law ◦) of order L >
n ·m ·X · Y , which defines the encoding function E : ZL × Z→ G.

2. For all gpk← GSetup⋆(1λ, F m,X,Y
IP , 1n), (ek, msk)← Setup(1λ, gpk, F m,X,Y

IP), x ∈ Zm,
ctx ← Enc(gpk, ek, x), y ∈ Zm, and dky ← KeyGen(gpk, msk, y), we have

Dec1(gpk, ctx, dky) = E(〈x, y〉 mod L, noise),

for some noise ∈ N that depends on ctx and dky. Furthermore, it holds that for
all x, y ∈ Zm, Pr[noise < B] = 1− negl(λ), where the probability is taken over the
random coins of GSetup⋆, Setup, Enc and KeyGen. Note that there is no restriction
on the magnitude of 〈x, y〉 here, and we are assuming that Enc accepts inputs x
whose norm may be larger than the bound.

3. Given any γ ∈ ZL, and gpk, one can efficiently compute E(γ, 0).

4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, , noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′).

5. For all γ < n ·m ·X · Y , and noise < n ·B, Dec2
(
gpk, E(γ, noise)

)
= γ.

The second property is as follows.

Property 2: Linear encryption

For any FE scheme FE = (GSetup, Setup, Enc, KeyGen, Dec) satisfying the two-step prop-
erty, we define the following additional property. There exists a deterministic algorithm
Add that takes as input a ciphertext and a message, such that for all x, x′ ∈ Zm, the
following are identically distributed:

Add(Enc(gpk, ek, x), x′), and Enc
(
gpk, ek, (x + x′ mod L)

)
,

where gpk ← GSetup⋆(1λ, F m,X,Y
IP), (ek, msk) ← Setup(1λ, gpk, F m,X,Y

IP). Note that the
value L ∈ N is defined as part of the output of the algorithm Setup⋆ (see the two-step
property above). We later use a single input FE with this property as a building block
for a multi-input FE (see Figure 5.4); this property however is only used in the security
proof of our transformation.

Instantiations. It is not hard to check that these two properties are satisfied by known
functional encryption schemes for (bounded-norm) inner product. In particular, in Section 5.2,
we show that this is satisfied by the many-AD-IND secure FE schemes from [ALS16]. This
allows us to obtain MIFE schemes for bounded-norm inner product based on a variety of
assumptions such as plain DDH, Decisional Composite Residuosity, and LWE. In addition to
obtaining the first schemes without the need of pairing groups, we also obtain schemes where
decryption works efficiently even for large outputs. This stands in contrast to the previous
result in the previous chapter, where decryption requires to extract discrete logarithms.

Correctness. The correctness of the scheme MIFE follows from (i) the correctness and
Property 1 (two-step decryption) of the single-input scheme, and (ii) from the correctness of
MIFEot and the linear property of its decryption algorithm Decot.

More precisely, consider any vector x := (x1‖ · · · ‖xn) ∈ (Zm)n, y ∈ Zmn, such that ‖x‖∞ <
X, ‖y‖∞ < Y , and let (pk, msk, {eki}i∈[n]) ← Setup(1λ, F m,X,Y

IP), dky ← KeyGen(pk, msk, y),

108 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

Setup(1λ, F m,X,Y
n):

(
pkot, mskot, {ekot

i }i∈[n]

)
← Setupot(1λ, F m,X,Y

n), gpk′ ← GSetup⋆(1λ, F m,3X,Y
IP , 1n), for all i ∈ [n],(

ek′
i, msk′

i

)
← Setup′(1λ,Fm,3X,Y

1 , 1n), eki := ekot
i

pk := (gpk, {ek′
i}i∈[n]), msk :=

(
mskot, {msk′

i}i∈[n]

)
,

Return
(
pk, msk, {eki}i∈[n]

)

Enc(pk, eki, xi):

wi := Encot(pkot, ekot
i , xi)

Return Enc′(gpk′, ek′
i, wi)

KeyGen(pk, msk, y1‖ · · · ‖yn):

For all i ∈ [n], dk′
i ← KeyGen′(gpk′, msk′

i, yi), z ← KeyGenot(pkot, mskot, y1‖ · · · ‖yn)
dky1‖···‖yn

:=
(
{dk′

i}i∈[n], z
)

Return dky1‖···‖yn

Dec(dky1‖···‖yn
, ct1, . . . , ctn):

Parse dky1‖···‖yn
:= ({dk′

i}i∈[n], z). For all i ∈ [n], E(〈xi + ui, yi〉 mod L, noisei)← Dec1(dk′
i, cti)

Return Dec2

(
E(〈x1 + u1, y1〉 mod L, noise1) ◦ · · · ◦ E(〈xn + un, yn〉 mod L, noisen) ◦ E(−z, 0)

)

Figure 5.4: Private-key multi-input FE schemeMIFE = (Setup, Enc, KeyGen, Dec) for the functional-
ity F m,X,Y

n from public-key single-input FE scheme FE = (GSetup′, Setup′, Enc′, KeyGen′, Dec′) for the
functionality F m,3X,Y

IP and the one-time multi-input FE MIFEot = (Setupot, Encot, KeyGenot, Decot)
from Figure 5.1.

and cti ← Enc(pk, eki, xi) for all i ∈ [n].
By (2) of Property 1, the decryption algorithm Dec(dky, ct1, . . . , ctn) computes E(〈wi, yi〉 mod

L, noisei)← Dec1(dk′i, cti) where for all i ∈ [n], noisei < B, with probability 1− negl(λ).
By (4) of Property 1 (linearity of E), and the correctness of MIFEot we have:

E(〈w1, y1〉 mod L, noise1) ◦ · · · ◦ E(〈wn, yn〉 mod L, noisen) ◦ E(−z, 0)

= E

Decot(z, w1, . . . , wn),

∑

i∈[n]

noisei


 = E


〈x, y〉 mod L,

∑

i∈[n]

noisei


 .

Since 〈x, y〉 < n ·m ·X · Y < L and
∑

i∈[n] noisei < n ·B, we have

Dec2
(E(〈x, y〉 mod L,

∑

i∈[n]

noisei)
)

= 〈x, y〉,

by (5) of Property 1.

Proof of Security. In the following theorem we show that our construction is a many-AD-
IND-secure MIFE, assuming that the underlying single-input FE scheme is many-AD-IND-
secure, and the scheme MIFEot is one-AD-IND secure.

Theorem 14: many-AD-IND security

Assume that the single-input FE: FE , is many-AD-IND secure and the multi-input FE
MIFEot is one-AD-IND-weak secure. Then the multi-input FE MIFE in Figure 5.4 is
many-AD-IND secure.

Proof of Theorem 14. Using Theorem 2, it is sufficient to prove many-AD-IND-zero (i.e. the
scheme is secure when no decryption keys are queried), and many-AD-IND-weak i.e. we assume

5.1 From Single to Multi-Input FE for Inner Product 109

Game ct
j
i justification/remark

G0 Enc(pk, eki, xj,0
i − x1,0

i + x1,0
i) many-AD-IND-weakMIFE

0 (A, 1λ) security game

G1 Enc(pk, eki, xj,0
i − x1,0

i + x1,1
i) one-AD-IND-weak security of MIFEot, Lemma 33

G2 Enc(pk, eki, xj,1
i) many-AD-IND security of FE for n instances, Lemma 34

Figure 5.5: An overview of the games used in the proof of Theorem 14.

Games: G0, G1 , G2 :

(pkot, mskot, {ekot
i }i∈[n] ← Setupot(1λ, F m,X,Y

n), gpk′ ← GSetup′(1λ, F m,3X,Y
IP), for all i ∈ [n],

(ek′
i, msk′

i)← Setup′(1λ, gpk, F m,3X,Y
n), eki := ekot

i , pk := {gpk′, ek′
i}i∈[n]

α← AOKeygen(·),OEnc(·,·),OCorrupt(·)(pk)
Return α.

OEnc(i, (xj,0
i , xj,1

i)):

wj
i := Encot(pkot, ekot

i , xj,0
i − x1,0

i + x1,0
i)

wj
i := Encot(pkot, ekot

i , xj,0
i − x1,0

i + x1,1
i)

wj
i := Encot(pkot, ekot

i , xj,1
i − x1,1

i + x1,1
i)

Return ct
j
i := Enc′(gpk′, ek′

i, wj
i).

OKeygen(y):
For all i ∈ [n], dk′

i ← KeyGen′(gpk′, msk′
i, yi), z ← KeyGenot(pkot, mskot, y1‖ · · · ‖yn),

dky1‖···‖yn
:=
(
{dk′

i}i∈[n], z
)

Return dky1‖···‖yn

OCorrupt(i):
Return ekot

i

Figure 5.6: Games for the proof of Theorem 14.

the adversary requests a challenge ciphertext for all slots i ∈ HS, where HS := [n]\CS denotes
the set of slots that are not corrupted) to obtain many-AD-IND security.

The many-AD-IND-zero security of MIFE follows directly from the many-AD-IND secu-
rity of FE for n instances (which is implied by the security for a single instance, see Lemma 5).
In what follows, we prove many-AD-IND-weak security of MIFE .

We proceed via a series of games Gi for i ∈ {0, . . . , 2}, described in Figure 5.6. The
transitions are summarized in Figure 5.5. Let A be a PPT adversary. For any game G, we
denote by AdvG(A) the probability that the game G outputs 1 when interacting with A. Note
that the set of input slots for which a challenge ciphertext is queried, denoted by I in Figure 5.6,
is such that HS ⊆ I, since we want to prove many-AD-IND-weak security.

According to Definition 21, we have: Adv
many-AD-IND-weak
MIFE,A (λ) = |AdvG0(A)− AdvG2(A)|.

Game G1: is as game G0, except we replace the challenge ciphertexts to ct
j
i = Enc(pk, eki,

xj,0
i −x1,0

i +x1,1
i) for all i ∈ [n] and j ∈ [Qi], using the one-AD-IND-weak security ofMIFEot.

Namely, we prove in Lemma 33 that there exists a PPT adversary B1 such that

AdvG0(A)− AdvG1(A) ≤ Advone-AD-IND
MIFEot,B1

(λ).

Game G2: we replace the challenge ciphertexts to ct
j
i = Enc(pk, eki, xj,1

i − x1,1
i + x1,1

i) =
Enc(pk, eki, xj,1

i) for all i ∈ [n] and j ∈ [Qi], using the many-AD-IND security of FE for
n instances, which is implied by the single-instance security (see Lemma 5). We prove in

110 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

Lemma 34 that there exists a PPT adversary B2 such that

AdvG1(A)− AdvG2(A) ≤ Adv
many-AD-IND
FE,B2,n (λ).

Putting everything together, we obtain:

Adv
many-AD-IND-weak
MIFE,A (λ) ≤ Advone-AD-IND-weak

MIFEot,B1
(λ) + Adv

many-AD-IND
FE,B2,n (λ).

Lemma 38: Game G0 to G1

There exists a PPT adversary B1 such that

|AdvG0(A)− AdvG1(A)| ≤ Advone-AD-IND-weak
MIFEot,B1

(λ).

Proof of Lemma 38. In game G1, which is described in Figure 5.6, we replace Enc(pk, eki, xj,0
i) =

Enc(pk, eki, x1,0
i + (xj,0

i − x1,0
i)) with Enc(pk, eki, x1,1

i + (xj,0
i − x1,0

i)) for all i ∈ [n], j ∈ [Qi].

This is justified by one-AD-IND-weak security of MIFEot. The adversary B1 proceeds as
follows.

-Simulation of pk:

Adversary B1 receives pkot from its experiment. Then, it samples gpk′ ← GSetup′(1λ, F m,3X,Y
IP),

and for all i ∈ [n], (ek′i, msk′i) ← Setup′(1λ, gpk′, F m,3X,Y
IP). It sends pk := (pkot, {ek′i}i∈[n]) to

A.

-Simulation of OEnc(i, (xj,0
i , xj,1

i)):

If j = 1, that is, the first query for slot i ∈ [n], then B1 queries its own encryption oracle
to get w1

i := Encot(pkot, ekot
i , x1,β

i), where β ∈ {0, 1}, depending on the experiment B1 is
interacting with. If j > 1, B1 uses the fact that the MIFEot from Figure 5.1 is linearly
homomorphic (see Remark 13) to generate all the remaining wj

i := w1
i + xj,0

i − x1,0
i mod L =

Encot(pkot, ekot
i , xj,0

i + x1,β
i − x0

i), which corresponds to the challenge ciphertexts in game Gβ.
Finally, B1 returns Enc′(gpk′, ek′i, wj

i) to A.

-Simulation of OKeygen(y1‖ · · · ‖yn):

B1 uses its own secret key generation oracle on input y1‖ · · · ‖yn to get z := KeyGenot(y1‖
· · · ‖yn). For all i ∈ [n], it computes dk′i := KeyGen′(gpk′, msk′i, yi). It sends dky1‖···‖yn

:=
({dk′i}i∈[n], z) to A.

Finally, B1 forwards the output α of A to its own experiment. It is clear that for all
β ∈ {0, 1}, when B1 interacts with many-AD-IND-weakMIFE

ot

β , it simulates the game Gβ

to A. Therefore,

Adv
many-AD-IND-weak

MIFEot,B1
(λ) =

∣∣Pr
[
many-AD-IND-weakMIFE

ot

0 (1λ,B1) = 1
]

− Pr
[
many-AD-IND-weakMIFE

ot

1 (1λ,B1) = 1
] ∣∣ =

|AdvG0(A)− AdvG1(A)|.

5.1 From Single to Multi-Input FE for Inner Product 111

Lemma 39: Game G1 to G2

There exists a PPT adversary B2 such that

|AdvG1(A)− AdvG2(A)| ≤ Adv
many-AD-IND
FE,B2,n (λ).

Proof of Lemma 39. In Game G2, we replace Enc′(gpk′, ek′i, x1,1
i + (xj,0

i − x1,0
i) ‖zi) with Enc(gpk′,

ek′i, x1,1
i + (xj,1

i − x1,1
i) ‖zi) = Enc(gpk′, ek′i, xj,1

i ‖zi), for all i ∈ [n], j ∈ [Qi]. This follows from
the many-AD-IND security of FE for n instances, which we can use since for each key query
y1‖ . . . ‖yn and all r, z, we have

〈Encot(pkot, ekot, x1,1
i + xj,0

i − x1,0
i , yi〉 = 〈ui + x1,1

i + xj,0
i − x1,0

i , yi〉
= 〈ui + x1,1

i + xj,1
i − x1,1

i , yi〉
= 〈Encot(pkot, ekot, x1,1

i + xj,1
i − x1,1

i , yi〉

The second equality is equivalent to 〈xj,0
i − x1,0

i , yi〉 = 〈xj,1
i − x1,1

i , yi〉, which follows from
the restriction imposed by the security game (see Remark 7).

We build a PPT adversary B2 such that:

|AdvG1(A)− AdvG2(A)| ≤ Adv
many-AD-IND
FE,B2,n (λ).

Adversary B2 proceeds as follows.

-Simulation of pk:

Adversary B2 receives (gpk′, {ek′i}i∈[n] from its experiment. Then, it samples (pkot, mskot,

{ekot
i }i∈[n])← Setupot(1λ, F m,X,Y

n), and sends pk := (pkot, gpk′, {ek′i}i∈[n]), to A.

-Simulation of OEnc(i, (xj,0
i , xj,1

i)):

For all b ∈ {0, 1}, B1 computes wj,b
i := x1,1

i + xj,b
i − x1,b

i , and queries its own encryption oracle
on input (i, wj,0

i , wj,1
i), to get Enc′(gpk′, ek′i, wj,β

i), which it forwards to A, where β ∈ {0, 1},
depending on the experiment B2 is interacting with.

-Simulation of OKeygen(y1‖ · · · ‖yn):

for all i ∈ [n], B1 uses its own decryption key generation oracle on input yi to get dk′i :=
KeyGen′(gpk′, msk′i, yi). It computes z := KeyGenot(pkot, mskot, y1‖ · · · ‖yn), which it can do
since it knows mskot. It sends dky1‖···‖yn

:= ({dk′i}i∈[n], z) to A.

-Simulation of OCorrupt(i):

B1 returns ekot
i to A.

Finally, B2 forwards the outputs α of A to its own experiment. It is clear that for all
β ∈ {0, 1}, when B2 interacts with many-AD-INDFEβ (1λ, 1n,B2), it simulates the game G1+β

to A. Therefore,

Adv
many-AD-IND
FE,B2,n (λ) =

∣∣∣Pr
[
many-AD-INDFE0 (1λ, 1n,B2) = 1

]
− Pr

[
many-AD-INDFE1 (1λ, 1n,B2) = 1

]∣∣∣ =

|AdvG1(A)− AdvG2(A)|.

112 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

Concrete instances of FE for Inner Product

In this section we discuss three instantiations of our generic construction from Section 5.1.3.
In particular, we show that the existing (single-input) public-key FE schemes proposed by
[ALS16] (that are proven many-AD-IND-secure) satisfy Property 1 (two-step decryption) and
Property 2 (linear encryption). These schemes are presented Section 2.6, recalled here for
completeness.

Inner Product FE from MDDH

Here we present the FE for bounded norm inner product from [ALS16, Section 3], generalized
to the Dk(p)-MDDH setting, as in [AGRW17, Figure 15]. It handles the following functionality
F m,X,Y

ip : K × X → Z, with X := [0, X]m, K := [0, Y]m, Z := Z, and for all x ∈ X , y ∈ Y, we
have:

F m
ip (y, x) = 〈x, y〉.

In [ALS16], it was proven many-AD-IND secure under the DDH assumption. In Sec-
tion 2.6.1, we extend the many-AD-IND security proof from [AGRW17] to the multi-instance
setting. We also show in this section that it satisfies Property 1 (two-step decryption) and
Property 2 (linear encryption).

GSetup(1λ, F m,X,Y
IP):

G := (G, p, P)← GGen(1λ), A←R Dk(p), gpk := (G, [A])
Return gpk

Setup(1λ, gpk, F m,X,Y
IP):

W←R Z
m×(k+1)
p , ek := [WA], msk := W

Return (ek, msk)

Enc(gpk, ek, x):
r←R Zk

p

Return
[
−Ar

x + WAr

]
∈ Gk+m+1

KeyGen(gpk, msk, y):

Return
(

W⊤y
y

)
∈ Zk+m+1

p

Dec(gpk, [c], d):
C := [c⊤d]
Return log(C)

Figure 5.7: FE , a functional encryption scheme for the functionality F m,X,Y
IP , whose many-AD-IND

security is based on the Dk(p)-MDDH assumption.

Proof of Property 1 (two-step decryption).

1. The algorithm GSetup⋆(1λ, F m,X,Y
IP , 1n) works the same as GSetup except that it addi-

tionally uses n to ensure that n ·m ·X · Y = poly(λ) (which implies n ·m ·X · Y < p).
Also, it returns the bound B := 0, L := p, G as the same group of order p generated by
GGen(1λ), and the encoding function E : Zp × Z→ G defined for all γ ∈ Zp, noise ∈ Z as

E(γ, noise) := [γ].

We let Dec1 and Dec2 be the first and second line of Dec in Figure 5.7 respectively.

5.2 Concrete instances of FE for Inner Product 113

2. We have for all x, y ∈ Zm,

Dec1
(
dky, ctx := [c]

)
:= [c]⊤dky = [〈x, y〉] = E(〈x, y〉 mod p, 0).

3. It is straightforward to see that E(γ, 0) is efficiently and publicly computable.

4. It is also easy to see that E is linear.

5. Finally, for all γ ∈ Z such that γ < n ·m ·X · Y ,

Dec2(E(γ mod p, 0)) := log([γ mod p]) = γ mod p = γ,

where the log can be computed efficiently since γ < n ·m ·X · Y is assumed to lie in a
polynomial size range.

Proof of Property 2 (linear encryption).

For all x′ ∈ Zm and [c] ∈ Gm+k+1, let Add([c], x′) := [c] +

[
0
x′

]
. Then, for all x, x′ ∈ Zm, and

[c] := Enc(gpk, ek, x) =

[
−Ar

x + WAr

]
, we have:

Add([c], x′) = [c] +

[
0
x′

]
=

[
−Ar

x + x′ + WAr

]
= Enc

(
gpk, ek, (x + x′ mod p)

)
.

Inner Product FE from LWE

Here we show that the many-AD-IND secure Inner Product FE from [ALS16, Section 4.1]
and recalled in Figure 5.8, satisfies Property 1 (two-step decryption) and Property 2 (linear
encryption).

Property 1 (two-step decryption).

1. The algorithm GSetup⋆(1λ, F m,X,Y
IP , 1n) works the same as Setup except that it uses n to

set K := n ·m · X · Y , and it also returns the bound B :=
⌊ q

K

⌋
, L := q, G := (Zq, +),

and the encoding function E : Zq × Z→ G defined for all γ ∈ Zq, noise ∈ Z as

E(γ mod q, noise) := γ ·
⌊

q

K

⌋
+ noise mod q.

Also, parameters M, q, α and distribution D are chosen as explained in Section 2.6.2, as
if working with input vectors of dimension n ·m.

We let Dec1 and Dec2 be the first and second line of Dec in Figure 5.8 respectively.

2. We have for all x, y ∈ Zm,

Dec1
(
dky, ctx := (c0, c1)

)
=

(
c0

c1

)⊤

dky mod q

= 〈x, y〉 ·
⌊

q

K

⌋
+ y⊤e1 − e⊤

0Z⊤y mod q

= E(〈x, y〉 mod q, noise),

where noise := y⊤e1 − e⊤
0Z⊤y, and Pr[noise < B] = 1− negl(λ).

3. It is straightforward to see that E(γ, 0) is efficiently and publicly computable.

114 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

GSetup(1λ, F m,X,Y
IP):

Let integers M, q ≥ 2, real α ∈ (0, 1), and distribution D over Zm×M chosen as explained
in Section 2.6.2; K := m ·X · Y , A←R ZM×λ

q , gpk := (K, A).
Return gpk

Setup(1λ, gpk, F m,X,Y
IP):

Z←R D, U := ZA ∈ Zm×λ
q , ek := U, msk := Z.

Return (ek, msk)

Enc(gpk, ek, x ∈ Zm):

s←R Zλ
q , e0 ←R DM

Z,αq, e1 ←R Dm
Z,αq

c0 := As + e0 ∈ ZM
q

c1 := Us + e1 + x · ⌊ q
K

⌋ ∈ Zm
q

Return ctx := (c0, c1)

KeyGen(gpk, msk, y ∈ Zm):

Return dky :=

(
Z⊤y

y

)
∈ ZM+m

Dec
(
gpk, dky, ctx):

µ′ :=

(
c0

c1

)⊤

dky mod q.

Return µ ∈ {−K + 1, . . . , K − 1} that minimizes
∣∣⌊ q

K ⌋µ− µ′
∣∣.

Figure 5.8: Functional encryption scheme for the class F m,X,Y
IP , based on the LWE assumption.

4. It is also easy to see that E is linear.

5. Finally, for all γ ∈ Z such that γ < n ·m ·X · Y , and noise < n ·B,

Dec2(E(γ mod q, noise)) = γ,

follows by the same decryption correctness argument in [ALS16], with the only difference
that here we used a larger bound K.

Property 2 (linear encryption). For all x′ ∈ Zm and (c0, c1) ∈ ZM+m
q , let Add((c0, c1), x′) :=

(c0, c1) + (0, x′ · ⌊ q
K

⌋
) mod q. Then, for all x, x′ ∈ Zm, and (c0, c1) := (As + e0, Us + e1 + x ·⌊ q

K

⌋
) ∈ ZM+m

q , we have:

Add((c0, c1), x′) = (As + e0, Us + e1 + (x + x′) ·
⌊

q

K

⌋
) mod q = Enc

(
mpk, (x + x′ mod q)

)
.

Inner Product FE from DCR

Here we show that the Inner Product FE from [ALS16, Section 5.1] and recalled in Figure 5.9
satisfies Property 1 (two-step decryption) and Property 2 (linear encryption).

Property 1 (two-step decryption).

1. The algorithm GSetup⋆(1λ, F m,X,Y
IP , 1n) works the same as Setup except that it addition-

ally uses n to ensure n · m · X · Y < N . Also, it returns the bound B := 0, L := N ,

5.2 Concrete instances of FE for Inner Product 115

GSetup(1λ, F m,X,Y
IP):

Choose primes p = 2p′ + 1, q = q′ + 1 with prime p′, q′ > 2l(λ) for an l(λ) = poly(λ) such
that factoring is λ-hard, and set N := pq ensuring that m · X · Y < N . Sample g′ ←R Z∗

N2 ,
g := g′2N mod N2.
Return gpk := (N, g)

Setup(1λ, gpk, F m,X,Y
IP):

s ←R DZm,σ, for standard deviation σ >
√

λ · N5/2, and for all j ∈ [m], hj := gsj mod N2.
ek := {hj}j∈[m], msk := {sj}j∈[m]

Return (ek, msk)

Enc(gpk, ek, x ∈ Zm):
r ←R {0, . . . , ⌊N/4⌋}, C0 := gr ∈ ZN2 , for all j ∈ [m], Cj := (1 + xjN) · hr

j ∈ ZN2

Return ctx := (C0, . . . , Cm) ∈ Zm+1
N2

KeyGen(gpk, msk, y ∈ Zm):
d :=

∑
j∈[m] yjsj ∈ Z.

Return sky := (d, y)

Dec
(
gpk, sky := (d, y), ctx):

C :=
(∏

j∈[m] C
yj

j

)
· C−d

0 mod N2.

Return log(1+N)(C) := C−1 mod N2

N .

Figure 5.9: Functional encryption scheme for the class F m,X,Y
IP , based on the DCR assumption.

G as the subgroup of Z∗N2 of order N generated by (1 + N), and the encoding function
E : ZN × Z→ G defined for all γ ∈ ZN , noise ∈ Z as

E(γ, noise) := 1 + γ ·N mod N2.

We let Dec1 and Dec2 be the first and second line of Dec in Figure 5.9.

2. We have for all x, y ∈ Zm,

Dec1(dky := (d, y), ctx) :=


 ∏

j∈[m]

C
yj

j


 · C−d

0 mod N2 = E(〈x, y〉 mod N, 0).

3. It is straightforward to see that see that E(γ, 0) can be efficiently computed from public
information.

4. It is also easy to see that E is linear.

5. Finally, for all γ ∈ Z such that γ ≤ n ·m ·X · Y < N , it holds

Dec2(E(γ, 0)) :=
E(γ, 0)− 1 mod N2

N
= γ.

Property 2 (linear encryption). For all x′ ∈ Zm and (C0, C ′1, . . . , C ′m) ∈ Zm+1
N2 , let

Add((C0, C1, . . . , Cm), x′) computes C ′j := Cj · (1 + x′jN) mod N2 for all j ∈ [m] and out-
puts (C0, C ′1, . . . , C ′m). Then, for all x, x′ ∈ Zm, and (C0, C1, . . . , Cm) := (gr, (1 + x1N) ·
hr

1, . . . , (1 + xmN) · hr
m) ∈ Zm

N2 , we have:

Add((C0, C1, . . . , Cm), x′) = (gr, (1 + (x1 + x′1)N) · hr
1 mod N2, . . .

, (1 + (xm + x′m)N) · hr
m mod N2)

= Enc
(
mpk, (x + x′ mod N)

)
.

116 Chapter 5. Multi-Input Inner-Product Functional Encryption without Pairings

Chapter 6

Multi-Client Inner Product

Functional Encryption

Overview of our construction.

We build the first MCFE for inner product from standard assumptions. Our construction
goes in four steps. First, we build an MCFE for inner product that only satisfies a weak
notion of security, namely, one-AD-IND-weak security (see Definition 51). That is, our scheme
is only secure when there is only one challenge ciphertext per input slot i ∈ [n] and label ℓ.
Moreover, the security notion does not take into account the information that can be extracted
from a partial decryption of ciphertexts. Recall that decryption usually operates on pk, msk,
and ciphertexts cti for all slots i ∈ [n]. But it is still possible to extract information from
ciphertexts cti for some, bot not all slots i ∈ [n]. The information on the underlying messages
that is leaked by such partial decryption is not captured by the weak security notion. The
security of this construction relies on the DDH assumption, in the random oracle model. This
work has appeared in [CDG+18a].

Second, we show how to transform our one-AD-IND secure MCFE for inner product into a
many-AD-IND secure MCFE, thereby allowing an adversary to obtain many challenge cipher-
texts, using an extra layer of single-input FE for inner product.

Third, we show how to remove the aforementioned limitation in the security model, using
a layer of secret sharing on top of the original MCFE. This layer ensures that given only
ciphertexts cti for some, but not all input slots i ∈ [n], one learns no information whatsoever
on the underlying messages. This transformation is generic: it takes as input any MCFE
with xx-AD-IND-weak security and turns it into an xx-AD-IND secure MCFE, where xx ∈
{many,one}. It can also be seen as a decentralized version of All-Or-Nothing Transforms
[Riv97, Boy99, CDH+00]. We propose a concrete instantiation in pairing-friendly groups,
under the Decisional Bilinear Diffie-Hellman problem, in the random oracle model. When
applied on our one-AD-IND-weak secure MCFE, we get an one-AD-IND secure MCFE.

Fourth, we propose an efficient decentralized algorithm to generate a sum of private inputs,
which can convert our many-AD-IND secure MCFE for inner product into a decentralized
many-AD-IND secure MCFE. This technique is inspired from [KDK11], and only applies to
the functional decryption key generation algorithm, and so this is compatible with the two
above conversions. We now expose our MCFE and SSE constructions in more details.

MCFE for inner product with one-AD-IND-weak security. We briefly showcase the
techniques that allow us to build efficient MCFE for inner product. The schemes we introduce
later enjoy adaptive security (aka full security), where encryption queries are made adaptively
by the adversary against the security game, but for the sake of clarity, we will here give an
informal description of a selectively-secure scheme from the DDH assumption, where queries

117

118 Chapter 6. Multi-Client Inner Product Functional Encryption

Scheme MCFE [ABDP15]

Setup : ∀i ∈ [n]:
si ←R Zm

p

eki := si
∀i ∈ [n]:

si ←R Zm
p

eki := [si]

Enc(pk, eki, xi, ℓ) :
[r] := H(ℓ)

return [ci] := [xi + sir]
r ←R Zp

return ([r], [ci] := [xi + sir])

KeyGen(pk, msk, y1‖ · · · ‖yn) :
d :=

∑
i y⊤

i si

returns (y1‖ · · · ‖yn, d)
d :=

∑
i y⊤

i si

returns (y1‖ · · · ‖yn, d)

Dec(pk, dky1‖···‖yn
, ct1, · · · , ctn, ℓ) :

Discrete logarithm of∑
i[c

⊤
i yi]− [r · d]

where [r] := H(ℓ)

Discrete logarithm of∑
i[c

⊤
i yi]− [r · d]

Figure 6.1: Comparison of the Inner-Product FE scheme from [ABDP15] and a similar MCFE
obtained by introducing a hash function H.

are made beforehand. Namely, the standard security notion for FE is indistinguishability-
based, where the adversary has access to a encryption oracle, that on input (m0, m1) either
always encrypts m0 or always encrypts m1. While for the adaptive security, the adversary can
query this oracle adaptively, in the selective setting, all queries are made at the beginning,
before seeing the public parameters.

We first design a secret-key MCFE scheme building up from the public-key FE scheme
introduced by [ABDP15] (itself a selectively-secure scheme) where we replace the global ran-
domness with a hash function (modeled as a random oracle for the security analysis), in order
to make the generation of the ciphertexts independent for each client. The comparison is illus-
trated in Figure 6.1. Note that for the final decryption to be possible, one needs the function
evaluation to be small enough, within this discrete logarithm setting. This is one limitation,
which is still reasonable for real-world applications that use concrete numbers, that are not of
cryptographic size.

Correctness then follows from:

∑

i

c⊤i yi − r · d =
∑

i

(xi + sir)⊤yi − r ·
∑

i

y⊤i si =
∑

i

x⊤i yi.

In [CDG+18a, Appendix B], this scheme is proven selectively secure under the DDH as-
sumption. To obtain adaptive security, we adapt the adaptively secure inner product FE from
[ALS16] in the same manner than described for the FE from [ABDP15].

Secret Sharing Encapsulation. AS explained, in order to deal with partial ciphertexts,
we introduce a new tool, called Secret Sharing Encapsulation (SSE). In fact, the goal is to
allow a user to recover the ciphertexts from the n senders only when he gets the contributions
of all of them. At first glance, one may think this could be achieved by using All-Or-Nothing
Transforms or (n, n)-Secret Sharing. However, these settings require an authority who operates
on the original messages or generates the shares. Consequently, they are incompatible with our
multi-client schemes. Our SSE tool can be seen as a decentralized version of All-Or-Nothing
Transforms or of (n, n)-Secret Sharing: for each label ℓ, each user i ∈ [n] can generate, on his
own, the share Sℓ,i. And, unless all the shares Si,ℓ have been generated, the encapsulated keys
are random and perfectly mask all the inputs.

We believe that SSE could be used in other applications. As an example, AONT was used
in some traitor tracing schemes [KY02, CPP05]. By using SSE instead of AONT, one can get
decentralized traitor tracing schemes in which the tracing procedure can only be run if all the
authorities agree on the importance of tracing a suspected decoder. This might be meaningful
in practice to avoid the abuse of tracing, in particular on-line tracing, which might break the
privacy of the users, in case the suspected decoders are eventually legitimate decoders.

6.1 MCFE with one-AD-IND-weak security 119

MCFE with one-AD-IND-weak security

Here we present a multi-client scheme MCFE for inner product over Z, that is, for the set of
functionalities {F m,X,Y

n }n∈N defined as F m,X,Y
n : Kn×X1×· · ·×Xn → Z, with Kn := [0, Y]mn,

for all i ∈ [n], Xi := [0, X]m, Z := Z, such that for any (y1‖ · · · ‖yn) ∈ Kn, xi ∈ Xi, we have:

F m,X,Y
n

(
(y1‖ · · · ‖yn), x1, . . . , xn

)
=

n∑

i=1

〈xi, yi〉.

We prove its one-AD-IND-weak security under the Dk(p) in prime-order group (a particular
case being the DDH assumption). Note that we do not require pairing-friendly groups. As
explained in the introduction of this chapter, this scheme will be used to build many-AD-IND
secure MCFE for inner product. The scheme is described in Figure 6.2.

Setup(1λ, F m,X,Y
n):

G := (G, p, P) ← GGen(1λ),
H : {0, 1}∗ → Gk+1 be a full do-
main hash function modeled as a random
oracle.
For all i ∈ [n], Si ←R Z

m×(k+1)
p ,

eki := Si, pk = G, msk := {Si}i∈[n].
Return (pk, msk, (eki)i∈[n]).

Enc(pk, eki, xi, ℓ):
Compute [r] := H(ℓ).
Return [ci] := [xi + Sir].

KeyGen(pk, msk, (y1‖ · · · ‖yn)):

d :=
∑

i∈[n] S⊤
i yi

Return dky1‖···‖yn
:= (y1‖ · · · ‖yn, d).

Dec
(
pk, dky1‖···‖yn

, [c1], . . . , [cn], ℓ):

Parse dky1‖···‖yn
:= (y1‖ · · · ‖yn, d).

Compute [r] := H(ℓ).
Return the discrete log of

∑n
i=1[c⊤

i yi] −
[r⊤d].

Figure 6.2: Private-key, one-AD-IND-weak secure, multi-client FE scheme MCFE = (Setup, Enc,
KeyGen, Dec) for the class F m,X,Y

n , one-AD-IND-weak secure under the Dk(p)-MDDH assumption in G.

Correctness of MCFE follows from:

∑

i

[c⊤i yi]− [r⊤d] =
∑

i

[(xi + Sir)⊤yi]− [r⊤
∑

i

S⊤i yi] =
∑

i

[x⊤i yi].

We know
∑

i〈xi, yi〉 ≤ n·m·X ·Y , which is bounded by a polynomial in the security param-
eter. Thus, decryption can efficiently recover the discrete log:

∑
i〈xi, yi〉 mod p =

∑
i〈xi, yi〉,

where the equality holds since
∑

i〈xi, yi〉 ≤ n ·m ·X · Y ≪ p.

Theorem 15: one-AD-IND-weak security

The scheme MCFE from Figure 6.2 is one-AD-IND-weak secure assuming the Dk(p)-
MDDH assumption in G, in the random oracle model.

Proof of Theorem 15. We proceed via a series of games Gi for i ∈ {0, . . . , 2}, described in
Figure 6.3. The transitions are summarized in Figure 5.5. Let A be a PPT adversary. For any
game G, we denote by AdvG(A) the probability that the game G outputs 1 when interacting
with A.

According to Definition 21, we have:

Advone-AD-IND-weak
MCFE,A (λ) = |AdvG0(A)− AdvG4(A)|.

120 Chapter 6. Multi-Client Inner Product Functional Encryption

Games G0, G1, G2, (G3.q.1)q∈[Q+1], (G3.q.2, G3.q.3)q∈[Q] , G4

G := (G, p, g)← GGen(1λ), pk := G. For all i ∈ [n], Si ←R Z
m×(k+1)
p , eki := Si, msk := {Si}i.

A← Dk(p), a⊥ ←R Zk+1
p \ {0} s.t. A⊤a⊥ = 0

α← AOEnc(·,·,·),OKeygen(·),OCorrupt(·),RO(·)(pk).
Return α if Condition 1 and Extra condition from Definition 25 of one-AD-IND-weak security
are satisfied, 0 otherwise.

RO(ℓ): // G0, G1 , G2, G3.q.1, G3.q.2, G3.q.3 , G4

[uℓ] := H(ℓ), [uℓ] := RF(ℓ) , [uℓ] := [A · rℓ], with rℓ := RF′(ℓ)

On the q’th (fresh) query: [uℓ] := A · RF′(ℓ) + RF′′(ℓ) · a⊥

Return [uℓ].

OEnc(i, (x0
i , x1

i), ℓ): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3 , G4

[uℓ] := RO(ℓ),
[ci] := [x0

i + Siuℓ]

If [uℓ] is computed on the j-th RO-query, for j < q: [ci] := [x1
i + Siuℓ]

If [uℓ] is computed on the q-th RO-query: [ci] := [x1
i + Siuℓ]

[ci] := [x1
i + Siuℓ]

Return [ci]

OKeygen(y): Return
∑

i S⊤
i yi. //G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4

OCorrupt(i): Return Si. // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4

Figure 6.3: Games for the proof of Theorem 15. Here, RF, RF′, RF′′ are random functions
onto Gk+1, Zk

p, and Z∗p, respectively, that are computed on the fly. In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked by a solid
(dotted, gray) frame. Note that A’s queries must satisfy the condition from Definition 25,
including the extra condition, since we are only proving one-AD-IND-weak security.

Game G1: we replace the hash function H by a truly random function onto G2, that is
computed on the fly. This uses the pseudorandomness of the hash function H. Namely, in the
Random Oracle Model:

AdvG0(A) = AdvG1(A).

Game G2: here, the outputs of RO are uniformly random in the span of [A] for A← Dk(p).
This uses the Q-fold Dk(p)-MDDH assumption, where Q is the number of call to RO(·), which
tightly reduces to its 1-fold variant, using the random-self reducibility (see Lemma 1). Namely,
there exists a PPT adversary B such that

AdvG1(A)− AdvG2(A) ≤ Adv
Dk(p)-mddh

G,B (λ) +
1

p− 1
.

Note that we use the fact that the Condition 1 and Extra condition from Definition 25
of one-AD-IND-weak security are efficiently checkable. This allows adversary B to decide
efficiently whether to forward the output α of A, or 0 (in case the conditions are not satisfied)
to its own experiment.

Game G3.1.1: is exactly game G2. Thus,

AdvG2(A) = AdvG3.1.1(A).

6.1 MCFE with one-AD-IND-weak security 121

From game G3.q.1 to game G3.q.2: we first change the distribution of the output of RO

on its q’th query (note that two queries with the same input are counted once, that is, we
only count fresh queries), from uniformly random in the span of [A] to uniformly random over
Gk+1, using the Dk(p)-MDDH assumption. Then, we use the basis (A‖a⊥) of Zk+1

p , to write a
uniformly random vector over Zk+1

p as Au1 +u2 ·a⊥, where u1 ←R Zk
p, and u2 ←R Zp. Finally,

we switch to Au1 + u2 · a⊥ where u1 ←R Zk
p, and u2 ←R Z∗p, which only changes the adversary

view by a statistical distance of 1/p. Thus, there exists a PPT adversary B3.q.1 such that

AdvG3.q.1(A)− AdvG3.q.2(A) ≤ Adv
Dk(p)-mddh

G,B3.q.1
(λ) +

1
p

.

Once again, we rely on the fact that Condition 1 and Extra condition from Definition 25
of one-AD-IND-weak security are efficiently checkable.

From game G3.q.2 to game G3.q.3: We prove:

AdvG3.q.2(A) = AdvG3.q.3(A).

Note that if the output of the q’th fresh query to RO is not used by OEnc, then the games
G3.q.2 and G3.q.3 are identical. We consider the case where the output of the q’th fresh query
to RO is used by OEnc. We show that we also have AdvG3.q.2(A) = AdvG3.q.3(A) in that case,
in two steps.

In Step 1, we show that for all PPT adversaries B3.q.2 and B⋆
3.q.3, there exist PPT adversaries

B⋆
3.q.2 and B3.q.3 such that AdvG3.q.2(B3.q.2) = (p2m +1)n ·AdvG⋆

3.q.2
(B⋆

3.q.2) and AdvG3.q.3(B3.q.3) =
(p2m + 1)n · AdvG⋆

3.q.3
(B⋆

3.q.3), where the games G⋆
3.q.2 and G⋆

3.q.3 are selective variants of games
G3.q.2 and G3.q.3 respectively (see Figure 6.4). Note that those advantage are conditioned on
the fact that the output of the q’th fresh query to RO is used by OEnc.

In Step 2, we show that for all PPT adversaries B⋆, we have AdvG⋆
3.q.2

(B⋆) = AdvG⋆
3.q.3

(B⋆),
where again, these advantages are conditioned on the fact that the output of the q’th fresh
query to RO is used by OEnc.

Step 1. We build a PPT adversary B⋆
3.q.2 playing against G⋆

3.q.2, such that AdvG3.q.2(B3.q.2) =
(p2m + 1)n · AdvG⋆

3.q.2
(B⋆

3.q.2).

Adversary B⋆
3.q.2 first guesses for all i ∈ [n], zi ←R Z2m

p ∪{⊥}, which it sends to its selective
game G⋆

3.q.2. That is, the guess zi is either a pair of vectors (x0
i , x1

i) ∈ Z2m
p queried to OEnc, or

⊥, which means no query to OEnc. Then, it simulates A’s view using its own oracles. When
B⋆

3.q.2 guesses successfully (call E that event), it simulates B3.q.2’s view exactly as in G3.q.2.
Since event E happens with probability (p2m + 1)−n, we obtain:

AdvG⋆
3.q.2

(B⋆
3.q.2)

=
∣∣∣Pr[1← G⋆

3.q.2|E]
︸ ︷︷ ︸

=Pr[1←G3.q.2]

·Pr[E] + Pr[1← G⋆
3.q.2|¬E]

︸ ︷︷ ︸
=0

·Pr[¬E]

= Pr[E] · |Pr[1← G3.q.2]|
= (p2m + 1)−n · AdvG3.q.2(B3.q.2)

Adversary B3.q.3 is built similarly. As for prior reductions, we use the fact that Condition
1 and Extra condition from Definition 25 of one-AD-IND-weak security, and the validity of
the guess {zi}i∈[n], can be checked efficiently.

122 Chapter 6. Multi-Client Inner Product Functional Encryption

Step 2. We assume the values (zi)i∈[n] sent by B⋆ are consistent, that is, they don’t make the
game end and return 0. We also assume Condition 1 and Extra condition from Definition 25
of one-AD-IND-weak security are satisfied. We call E this event.

We show that games G⋆
3.q.2 and G⋆

3.q.3 are identically distributed, conditioned on E. To
prove so, we use the fact that the following are identically distributed: (Si)i∈[n],zi=(x0

i ,x1
i) and(

Si + γ(x1
i − x0

i)(a⊥)⊤
)

i∈[n],zi=(x0
i ,x1

i)
, where a⊥ ←R Zk+1

p \ {0} such that A⊤a⊥ = 0, and for

all i ∈ [n]: Si ←R Z
m×(k+1)
p , and γ ←R Zp. This is true since the Si are independent of the zi

(note that this is not true in adaptive games). Thus, we can re-write Si into Si+γ(x1
i−x0

i)(a⊥)⊤

without changing the distribution of the game.
We now take a look at where the extra terms γ(x1

i − x0
i)(a⊥)⊤ actually appear in the

adversary’s view. They do not appear in the output of OCorrupt, because we assume event E
holds, which implies for all i ∈ [n], either zi = ⊥, and there is no extra term; or zi = (x0

i , x1
i),

but by Condition 1, we must have x0
i = x1

i , which means there is again no extra term.
They appear in OKeygen(y) as

dky =
∑

i∈[n]

S⊤i yi + a⊥ · γ∑i:zi=(x0
i ,x1

i)(x
1
i − x0

i)⊤yi ,

where the gray term equals 0 by Condition 1 and Extra condition from Definition 25 of
one-AD-IND-weak security.

Finally, the extra terms γ(x1
i −x0

i)(a⊥)⊤ only appear in the output of the queries to OEnc

which use [uℓ] computed on the q’th query to RO, since for all others, the vector [uℓ] lies in the
span of [A], and A⊤a⊥ = 0. For the former, we have [c] := [Siuℓ + x0

i + γ(x1
i − x0

i)(a⊥)⊤uℓ].
Since u⊤ℓ a⊥ 6= 0, the above [c] is identically distributed to [Siuℓ + x1

i + γ(x1
i − x0

i)(a⊥)⊤uℓ].
Finally, reverting these statistically perfect changes, we obtain that [c] is identically distributed
to [Siuℓ + x1

i], as in game G⋆
3.q.3.

Thus, when event E happens, the games are identically distributed. When ¬E happens,
the games both return 0. Thus, we have

AdvG⋆
3.q.2

(B⋆) = AdvG⋆
3.q.3

(B⋆).

From game G3.q.3 to game G3.q+1.1: this transition is the reverse of the transition from
game G3.q.1 to game G3.q.2, namely, we use the Dk(p)-MDDH assumption to switch back the
distribution of [uℓ] computed on the q’th (fresh) query to RO from uniformly random over
Gk+1 (conditioned on the fact that u⊤ℓ a⊥ 6= 0) to uniformly random in the span of [A]. We
obtain a PPT adversary B3.q.3 such that

AdvG3.q.3(A)− AdvG3.q+1.1(A) ≤ Adv
Dk(p)-mddh

G,B3.q.3
(λ) +

1
p

.

From game G3.Q+1.1 to G4: First, we switch the distribution of all the vectors [uℓ] output by
the random oracle to uniformly random over Gk+1, using the Dk(p)-MDDH simultaneously for
all queried labels ℓ, using the random self reducibility of the MDDH assumption (cf Lemma 1).
Then, we using the random oracle model to argue that the output of the real hash function
H are distributed as the output of a truly random function computed on the fly (this is the
reserve transition than transition from gma eG0 to game G1). We obtain a PPT adversary B4

such that:
AdvG3.Q+1.1

(A)− G4 ≤ Adv
Dk(p)-mddh

G,B4
(λ) +

1
p− 1

.

Putting everything together, we obtain a PPT adversary B such that

Advone-AD-IND-weak
MCFE,A (λ) ≤ (2Q + 2) · Adv

Dk(p)-mddh

G,B (λ) +
2Q

p
+

2
p− 1

,

where Q denotes the number of calls to the random oracle.

6.1 MCFE with one-AD-IND-weak security 123

Games (G⋆
3.q.2, G⋆

3.q.3)q∈[Q]:(
state, (zi ∈ Z2m

p ∪ {⊥})i∈[n]

)
← A(1λ, 1n)

S := ∅, G := (G, p, P)← GGen(1λ), pk := G, A←R Dk(p), a⊥ ←R Zk+1
p \ {0} s.t. A⊤a⊥ = 0. For

all i ∈ [n], Si ←R Z
m×(k+1)
p .

α← AOEnc(·,·,·),OKeygen(·),OCorrupt(·),RO(·)(pk, state).
If ∃i ∈ [n] \ S such that zi 6= ⊥, the game ends, and returns 0.
Return α if Condition 1 and Extra condition from Definition 25 of one-AD-IND-weak security
are satisfied, 0 otherwise.

RO(ℓ): // G⋆
3.q.2, G⋆

3.q.3

[uℓ] := [Arℓ], with rℓ := RF′(ℓ)
On the q’th (fresh) query: [uℓ] := [A · RF′(ℓ) + RF′′(ℓ) · a⊥]
Return [uℓ].

OEnc(i, (x0, x1), ℓ): // G⋆
3.q.2 , G⋆

3.q.3

[uℓ] := RO(ℓ),
[c] := [x0 + Siuℓ]
If [uℓ] is computed on the j’th (fresh) query to RO with j < q: [c] := [x1 + Siuℓ].
If [uℓ] is computed on the q’th (fresh) query to RO, then:
• if (x0, x1) 6= zi, the game ends and returns 0.

• otherwise, [c] :=
[

x0 + x1 + Siuℓ

]
, S := S ∪ {i}.

Return [c].

OKeygen(y): //G⋆
3.q.2, G⋆

3.q.3

Return
∑

i S⊤
i yi.

OCorrupt(i): // G⋆
3.q.2, G⋆

3.q.3

Return Si.

Figure 6.4: Games G⋆
3.q.2 and G⋆

3.q.3, with q ∈ [Q], for the proof of Theorem 15. Here, RF, RF′

are random functions onto Gk+1, and Zk
p, respectively, that are computed on the fly. In each

procedure, the components inside a solid (gray) frame are only present in the games marked
by a solid (gray) frame.

124 Chapter 6. Multi-Client Inner Product Functional Encryption

From one to many ciphertext for MCFE

In this section, we add an extra layer of public-key, single-input inner product FE on top of the
inner product MCFE from Section 6.1, to remove the restriction of having a unique challenge
ciphertext per client and per label. Our construction works for any public-key single-input
inner product FE that is compatible with the inner product MCFE from Section 6.1, that is,
an FE whose message space is the ciphertext space of the MCFE. Namely, we use a single-input
FE whose encryption algorithm can act on vectors of group elements, in Gm, where G is a
prime-order group, as opposed to vectors over Z. Decryption recovers the inner product in
the group G, without any restriction on the size of the input of the encryption and decryption
key generation algorithms. The message space of the FE is Gm, for some dimension m, its
decryption key space is Zm

p , where p is the order of G, and for any [x] ∈ Gm, y ∈ Zm
p ,the

decryption of the encryption of [x] together with the functional decryption key associated with
y yields [x⊤y].

For correctness, we exploit the fact that decryption of the MCFE from Section 6.1 computes
the inner product of the ciphertext together with the decryption keys. For security, we exploit
the fact that the MCFE is linearly homomorphic, in the sense that given an input x, one can
publicly maul an encryption of x′ into an encryption of x + x′. This is used to bootstrap the
security from one to many challenge ciphertexts per (user,label) pair, similarly to the security
proof in Chapter 4 in the context of multi-input inner product FE. In fact, the construction
in Chapter 5 uses a one-time secure multi-input FE as inner layer, and a single-input inner
product FE as outer layer, while we use an inner product MCFE as inner layer, and a single-
input inner product FE as outer layer.

Before presenting our construction in Figure 6.5, we remark that the MCFE from Section 6.1
satisfies the following properties.

• Linear Homomorphism of ciphertexts: for any i ∈ [n], xi, x′i ∈ Zm
p , and any label ℓ, we

have [ci] + [x′i] = Enc(pk, eki, xi + x′i, ℓ), where [ci] = Enc(pk, eki, xi, ℓ).

• Deterministic Encryption. In particular, together with the linear homomorphism of ci-
phertexts, this implies that for any xi, x′i ∈ Zm

p and any label ℓ, we have: Enc(pk, eki, xi, ℓ)−
Enc(pk, eki, x′i, ℓ) = [xi − x′i].

Correctness. By correctness of IPFE , we have for all i ∈ [n], and any label ℓ: [αℓ,i] =
[〈yi, xi + Siuℓ〉] = [〈yi, xi〉] + [uℓ]⊤S⊤i yi. Thus,

∑
i[αℓ,i] = [〈y, x〉] + [uℓ]⊤(

∑
i S⊤i yi). Since

d =
∑

i S⊤i yi, we have
∑

i[αℓ,i] = [〈y, x〉] + [uℓ]⊤d, hence [α] = [〈x, y〉].
We know 〈x, y〉 =

∑
i〈xi, yi〉 ≤ n·m·X ·Y , which is bounded by a polynomial in the security

parameter. Thus, decryption can efficiently recover the discrete logarithm:
∑

i〈xi, yi〉 mod p =∑
i〈xi, yi〉, where the equality holds since

∑
i〈xi, yi〉 ≤ n ·m ·X · Y ≪ p.

Security proof.

Theorem 16: many-AD-IND-weak security of MCFE

The scheme MCFE from Figure 6.5 is many-AD-IND-weak secure, assuming the under-
lying single-input FE IPFE is many-AD-IND secure, and using the fact that the scheme
MCFE ′ from Figure 6.2 is one-AD-IND-weak secure.

Proof overview. The proof is similar than the proof of Theorem 10, in Chapter 4, which
proves the many-time security of our multi-input FE from its one-time security. In the one-
AD-IND-weak security game, the adversary only queries OEnc on one input (i, (x0

i , x1
i), ℓ) per

6.2 From one to many ciphertext for MCFE 125

Setup(1λ, F m,X,Y
n):

(pk′, msk′, (ek′
i)i∈[n]) ← Setup′(1λ, F m,X,Y

n), gpk ← IP.GSetup(1λ, F m,X,Y
IP), for all i ∈ [n],

(IP.eki, IP.mski) ← IP.Setup(1λ, gpk, F m,X,Y
IP), eki := ek′

i, pk := (pk′, gpk, {IP.eki}i∈[n]),
msk := (msk′, {IP.mski}i∈[n]).
Return (pk, msk, {eki}i∈[n]).

Enc(pk, eki, xi, ℓ):

[cℓ,i]← Enc′(pk′, ek′
i, xi, ℓ)

Return Cℓ,i := IP.Enc(gpk, IP.eki, [cℓ,i])

KeyGen(pk, msk, y := y1‖ · · · ‖yn):

dk′
y ← KeyGen′(pk′, msk′, y), and for all i ∈ [n]: dkyi

← IP.KeyGen(gpk, IP.mski, yi).
Return dky := (dk′

y, {dkyi
}i∈[n]).

Dec
(
pk, dky, {Cℓ,i}i∈[n], ℓ):

Parse dky = (dk′
y, {dkyi

}i∈[n]), where dk′
y = (y, d). For all i ∈ [n], compute [αℓ,i] ←

IP.Dec(gpk, Cℓ,i, dkyi
). Then [uℓ] = H(ℓ), [α] = [

∑
i αℓ,i] − [uℓ]⊤d. Finally, it returns the dis-

crete logarithm α ∈ Zp.

Figure 6.5: MCFE , a many-AD-IND-weak secure MCFE for inner product. Here, MCFE ′ :=
(Setup′, Enc′, KeyGen′, Dec′) is the one-AD-IND-weak secure from Section 6.1, and IPFE :=
(IP.GSetup, IP.Setup, IP.Enc, IP.KeyGen, IP.Dec) is a many-AD-IND secure, public-key, single-input inner
product FE. Here, H denotes the hash function that is part of pk′.

input slot i ∈ [n] and label ℓ. In the many-AD-IND-weak security game, however, we may
have many such queries, and we use an index j ∈ [Qi,ℓ] to enumerate over such queries, where
Qi,ℓ denotes the number of queries to OEnc which contain the input i ∈ [n] and the label ℓ.
That is, we call (xj,0

i , xj,1
i) the j’th query to OEnc on label ℓ and slot i. The proof goes in two

steps:

• We first switch encryptions of x1,0
1 , . . . , x1,0

n to those of x1,1
1 , . . . , x1,1

n all at once, and for
the remaining ciphertexts, we switch from an encryption of xj,0

i = (xj,0
i − x1,0

i) + x1,0
i to

that of (xj,0
i −x1,0

i)+x1,1
i . We can do so using the one-AD-IND-weak security ofMCFE ,

and the fact that its encryption algorithm is linear homomorphic. In particular, given
an encryption of x1,β

i for β ∈ {0, 1}, and the vector (xj,0
i − x1,0

i), we can produce (only
with the public key) an encryption of (xj,0

i − x1,0
i) + x1,β

i . Thus, we can generate all the
challenge ciphertexts only from the security game where there is only a single ciphertext
in each slot and label.

• Then, we switch from encryptions of

(x2,0
i − x1,0

i) + x1,1
i , . . . , (xQi,0

i − x1,0
i) + x1,1

i

to those of
(x2,1

i − x1,1
i) + x1,1

i , . . . , (xQi,1
i − x1,1

i) + x1,1
i .

To carry out the latter hybrid argument, we use the fact that the queries must satisfy the
constraint:

[c⊤0,iyi] = [x1,1
i + xj,0

i − x1,0
i]⊤yi + [Siuℓ]⊤yi

= [x1,1
i + xj,1

i − x1,1
i]⊤yi + [Siuℓ]⊤yi

= [c1,i]⊤yi,

126 Chapter 6. Multi-Client Inner Product Functional Encryption

where Enc′ denotes the encryption algorithm ofMCFE ′ from Figure 6.2, and for all b ∈ {0, 1},
[cb,i] := Enc′(pk′, ek′i, x1,1

i + xj,b
i − x1,b

i , ℓ).
The second equality is equivalent to 〈xj,0

i − x1,0
i , yi〉 = 〈xj,1

i − x1,1
i , yi〉, which follows from

the restriction imposed by the security game (see Remark 7).
Thus, we can use the many-AD-IND security of the single-input FE IPFE for n instances

(which is implied by the single instance many-AD-IND security, see Lemma 5), to switch
simultaneously all the challenge ciphertexts for all slots i ∈ [n]. As explained in the beginning
of this section, the construction is essentially the same construction than multi-input FE for
inner product as in Section 5.4, except we replace the perfectly, one-time secure MIFE used in
the inner layer, by the one-time secure MCFE from Figure 6.2.

Proof of Theorem 16. We proceed via a series of games, described in Figure 6.6. Let A be
a PPT adversary. For any game G, we denote by AdvG(A) the probability that the game G

outputs 1 when interacting with A. Note that we have:

Adv
many-AD-IND-weak
MCFE,A (λ) = |AdvG0(A)− AdvG2(A)|,

according to Definition 25.

Game G1: is as game G0, except we replace the challenge ciphertexts to ct
j
i = Enc(pk, eki,

xj,0
i −x1,0

i + x1,1
i) for all i ∈ [n] and j ∈ [Qi], using the one-AD-IND-weak security ofMIFE ′.

Namely, we prove in Lemma 40 that there exists a PPT adversary B1 such that:

AdvG0(A)− AdvG1(A) ≤ Advone-AD-IND-weak
MCFE ′,B1

(λ).

Game G2: we replace the challenge ciphertexts to ct
j
i = Enc(pk, eki, xj,1

i − x1,1
i + x1,1

i) =
Enc(pk, eki, xj,1

i) for all i ∈ [n] and j ∈ [Qi], using the many-AD-IND security of IPFE for
n instances, which is implied by the single-instance security (see Lemma 5). We prove in
Lemma 41 that there exists a PPT adversary B2 such that:

Adv1(A)− Adv2(A) ≤ Adv
many-AD-IND
IPFE,B2,n (λ).

Putting everything together, we obtain:

Adv
many-AD-IND-weak
MCFE,A (λ) ≤ Advone-AD-IND-weak

MCFE ′,B1
(λ) + Adv

many-AD-IND
IPFE,B2,n (λ).

Lemma 40: Game G0 to G1

There exists a PPT adversary B1 such that

|AdvG0(A)− AdvG1(A)| ≤ Advone-AD-IND-weak
MCFE ′,B1

(λ).

Proof of Lemma 40. In game G1, which is described in Figure 6.6, we replace Enc(pk, eki,

xj,0
i , ℓ) = Enc(pk, eki, x1,0

i + (xj,0
i − x1,0

i), ℓ) with Enc(pk, eki, x1,1
i + (xj,0

i − x1,0
i), ℓ) for all

i ∈ [n], j ∈ [Qi]. This is justified by the following properties:

• one-AD-IND-weak security of MCFE ′;

• the fact that Enc′ is linearly homomorphic. Namely, for all i ∈ [n], given Enc′(pk′, ek′i,

x1,β
i), xj,0

i − x1,0
i and pk′, we can create an encryption Enc′(pk′, ek′i, x1,β

i + xj,0
i − x1,0

i)
(corresponding to challenge ciphertexts in slot i in game Gβ).

The adversary B1 proceeds as follows.

6.2 From one to many ciphertext for MCFE 127

Games G0, G1 , G2 :

(pk, msk, (eki)i∈[n])← Setup(1λ, F m,X,Y
n)

α← AOEnc(·,·,·),OKeygen(·),OCorrupt(·)(pk, {eki}i∈CS)
Return α if condition 1 and extra condition from Definition 25 of many-AD-IND-weak
security are satisfied; otherwise, return 0.

OEnc(i, (xj,0
i , xj,1

i), ℓ):

ct
j
i := Enc(pk, eki, xj,0

i − x1,0
i + x1,0

i)

ct
j
i := Enc(pk, eki, xj,0

i − x1,0
i + x1,1

i)

ct
j
i := Enc(pk, eki, xj,1

i − x1,1
i + x1,1

i)

Return ct
j
i .

OKeygen(y1‖ · · · ‖yn):
Return KeyGen(pk, msk, y1‖ · · · ‖yn).

OCorrupt(i):
Return eki.

Figure 6.6: Games for the proof of Theorem 16.

-Simulation of pk:

The adversary B samples gpk ← GSetup(1λ, F m,X,Y
IP), and for all i ∈ [n], (eki, mski) ←

IP.Setup(1λ, gpk, F m,X,Y
IP). It receives a public key pk′ from its own experiment. It returns

pk := (pk′, gpk, {IP.eki}i∈[n]) to A.

-Simulation of OEnc(i, (xj,0
i , xj,1

i), ℓ):

If j = 1, that is, it is the first query for slot i ∈ [n] and label ℓ, then B1 queries its own
oracle to get [c1

i] := Enc′(pk′, ek′i, x1,β
i , ℓ), where β ∈ {0, 1}, depending on the experiment

B1 is interacting with. If j > 1, B1 uses the fact that MCFE ′ is linearly homomorphic to
generate all the remaining ciphertexts ct

j
i for i ∈ [n], j ∈ {2, . . . , Qi} by combining cti =

Enc′(pk′, ek′i, x1,β
i , ℓ) with the vector xj,0

i − x1,0
i to obtain an encryption Enc′(pk′, ek′i, x1,β

i +
xj,0

i − x1,0
i , ℓ), which matches the challenge ciphertexts in Game Gβ. Note that this can be

done using pk′ only. Moreover, there is no need to rerandomize the challenge ciphertext, since
the encryption is deterministic in MCFE ′. Then, for all i ∈ [n] and all j ∈ [Qi], B1 computes
ct

j
i := IP.Enc(gpk, IP.eki, [cj

i]), and returns {ct
j
i}i∈[n],j∈[Qi] to A.

-Simulation of OKeygen(y := y1‖ · · · ‖yn):

B1 uses its own secret key generation oracle to get dk′y ← OKeygen′(y), and for all i ∈ [n],
computes dkyi ← IP.KeyGen(gpk, IP.mski, yi). It returns (dk′y, {dkyi}i∈[n]) to A.

-Simulation of OCorrupt(i):

B1 uses its own oracle to get ek′i ← OCorrupt′(i), which it returns to A.
Finally, B1 forwards the output α of A to its own experiment. It is clear that for all

β ∈ {0, 1}, when B1 interacts with one-AD-INDMCFE
′

β , it simulates the game Gβ to A.

128 Chapter 6. Multi-Client Inner Product Functional Encryption

Therefore,

Advone-AD-IND
MCFE ′,B1

(λ) =
∣∣∣Pr

[
one-AD-INDMCFE

′

0 (1λ,B1) = 1
]
− Pr

[
one-AD-INDMCFE

′

1 (1λ,B1) = 1
]∣∣∣ =

|AdvG0(A)− AdvG1(A)|.

Lemma 41: Game G1 to G2

There exists a PPT adversary B2 such that

|AdvG1(A)− AdvG2(A)| ≤ Adv
many-AD-IND
IPFE,B2,n (λ).

Proof of Lemma 41. In Game G2, we replace Enc(pk, eki, x1,1
i + (xj,0

i − x1,0
i) , ℓ) with Enc(pk,

eki, x1,1
i + (xj,1

i − x1,1
i) , ℓ) for all i ∈ [n], j ∈ [Qi]. This follows from the many-AD-IND security

of IPFE for n instances, which we can use since for each key query y1‖ . . . ‖yn, we have

[c⊤0,iyi] = [x1,1
i + xj,0

i − x1,0
i]⊤yi + [Siuℓ]⊤yi

= [x1,1
i + xj,1

i − x1,1
i]⊤yi + [Siuℓ]⊤yi

= [c1,i]⊤yi,

where for all b ∈ {0, 1}, [cb,i] := Enc′(pk′, ek′i, x1,1
i + xj,b

i − x1,b
i , ℓ).

The second equality is equivalent to 〈xj,0
i − x1,0

i , yi〉 = 〈xj,1
i − x1,1

i , yi〉, which follows from
the restriction imposed by the security game (see Remark 7).

We build a PPT adversary B2 such that:

|AdvG1(A)− AdvG2(A)| ≤ Adv
many-AD-IND
IPFE,B2,n (λ).

Adversary B2 proceeds as follows.

-Simulation of pk:

Adversary B2 receives (gpk, {IP.eki}i∈[n]) from its experiment. Then, it samples (pk′, msk′,

{ek′i}i∈[n])← Setup′(1λ, F m,X,Y
n), and sends pk := (pk′, gpk, {IP.eki}i∈[n]), to A.

-Simulation of OEnc(i, (xj,0
i , xj,1

i), ℓ):

For all b ∈ {0, 1}, B1 computes [cj,b
i] ← Enc′(pk′, ek′i, x1,1

i + xj,b
i − x1,b

i , ℓ), and queries its own
encryption oracle on input (i, ([cj,0

i], [cj,1
i])), to get IP.Enc(gpk, IP.eki, [cj,β

i]), which it forwards
to A, where β ∈ {0, 1}, depending on the experiment B2 is interacting with.

-Simulation of OKeygen(y := y1‖ · · · ‖yn):

For all i ∈ [n], B1 uses its own decryption key generation oracle on input yi to get dkyi :=
IP.KeyGen(gpk, IP.mski, yi). It computes dky := KeyGen′(pk′, msk′, y), which it can do since it
knows msk′. It returns (dk′y, {dkyi}i∈[n]) to A.

6.3 Secret Sharing Encapsulation 129

-Simulation of OCorrupt(i):

B2 returns ek′i to A.

Finally, B2 checks whether condition 1 and extra condition from Definition 25 are satis-
fied. Note that involves checking an exponential number of equation for general functionalities.
But in the case of inner-product, B2 just has to look at spanned vector sub-spaces. Namely, all
queries (i, xji,0

i , xji,1
i , ℓ)i∈[n],ji∈[Qi] to OEnc and all queries y := (y1‖ · · · ‖yn) to OKeygen must

satisfy:
∑

i〈xji,0
i , yi〉 =

∑
i〈xji,1

i , yi〉. This is an exponential number of linear equations, but,
as noted in the beginning of Chapter 4, it suffices to verify the linearly independent equations,
of which there can be at most n ·m. This can be done efficiently given the queries.

If these conditions are satisfied, then B2 forwards A’s output α to its own experiment,
otherwise it sends 0 to its own experiment. It is clear that for all β ∈ {0, 1}, when B2 interacts
with many-AD-INDIPFEβ (1λ, 1n,B2), it simulates the game G1+β to A. Therefore,

Adv
many-AD-IND
IPFE,B2,n (λ) =

∣∣∣Pr
[
many-AD-INDIPFE0 (1λ, 1n,B2) = 1

]
− Pr

[
many-AD-INDIPFE1 (1λ, 1n,B2) = 1

]∣∣∣ =

|AdvG1(A)− AdvG2(A)|.

Secret Sharing Encapsulation

As explained in the introduction of this chapter, in the xx-AD-IND-weak security notion,
incomplete ciphertexts were considered illegitimate. This was with the intuition that no ad-
versary should use it since this leaks no information. But actually, an adversary could exploit
that in the real-life. We wish to obtain xx-AD-IND security, where the adversary can use in-
complete ciphertexts. We upgrade the scheme from the previous section so that no information
is leaked in such a case.

Namely, we present a generic layer, called the Secret Sharing Encapsulation (SSE), that
we will use to encapsulate ciphertexts. It allows a user to recover the ciphertexts from the n
senders only when he gets the contributions of all the servers. That is, if one sender did not
send anything, the user cannot get any information from any of the ciphertexts of the other
senders. More concretely, a share of a key Sℓ,i is generated for each user i ∈ [n] and each label
ℓ. Unless all the shares Si,ℓ have been generated, the encapsulation keys are random and mask
all the ciphertexts.

After giving the definition of SSE, we provide a construction whose security is based on
the DBDH assumption in asymmetric pairing groups.

Definitions

130 Chapter 6. Multi-Client Inner Product Functional Encryption

Definition 28: Secret Sharing Encapsulation (SSE)

A secret sharing encapsulation on K over a set of n senders is defined by four algorithms:

• SSE.Setup(1λ): Takes as input a security parameter 1λ and generates the public
parameters pksse and the personal encryption keys are eksse,i for all i ∈ [n];

• SSE.Encaps(pksse, ℓ): Takes as input the public parameters pksse and the label ℓ and
outputs a ciphertext Cℓ and an encapsulation key Kℓ ∈ K;

• SSE.Share(eksse,i, ℓ): Takes as input a personal encryption eksse,i and the label ℓ,
outputs the share Sℓ,i;

6.3 Secret Sharing Encapsulation 131

• SSE.Decaps(pksse, (Sℓ,i)i∈[n], ℓ, Cℓ): Takes as input all the shares Sℓ,i for all i ∈ [n],
a label ℓ, and a ciphertext Cℓ, and outputs the encapsulation key Kℓ.

Correctness. For any label ℓ, we have: Pr[SSE.Decaps(pksse, (Sℓ,i)i∈[n], ℓ, Cℓ) = Kℓ] =
1, where the probability is taken over

(
pksse, (eksse,i)i∈[n]

) ← SSE.Setup(λ), (Cℓ, Kℓ) ←
SSE.Encaps(pksse, ℓ), and Sℓ,i ← SSE.Share(eksse,i, ℓ) for all i ∈ [n].

Security. We want to show that the encapsulated keys are indistinguishable from random
if not all the shares are known to the adversary. We could define a Real-or-Random security
game [BDJR97a] for all the masks. Instead, we limit the Real-or-Random queries to one label
only (whose index is chosen in advance), and for all the other labels, the adversary can do
the encapsulation by itself, since it just uses a public key. This is well-known that a hybrid
proof among the label indices (the order they appear in the game) shows that the One-Label
security is equivalent to the Many-Label security. The One-Label definition will be enough for
our applications.

Definition 29: 1-label-IND security for SSE

An SSE scheme SSE := (SSE.Setup, SSE.Encaps, SSE.Share, SSE.Decaps) over n users is
1-label-IND secure if for every stateful PPT adversary A, we have:

Adv1-label-IND
SSE,A (λ) =

∣∣∣Pr
[
1-label-INDSSE0 (1λ,A) = 1

]
− Pr

[
1-label-INDSSE1 (1λ,A) = 1

]∣∣∣

= negl(λ),

where the experiments are defined for β ∈ {0, 1} as follows:

Experiment 1-label-INDSSEβ (1λ,A):

i⋆ ← A(1λ, 1n)
(pksse, (eksse,i)i∈[n])← Setup(1λ)
α← AOEncaps(·),OShare(·,·),OCorrupt(·)(pk)
Output: α

On input a label ℓ, the oracle OEncaps(ℓ) computes (Cℓ, Kℓ) ← SSE.Encaps(pksse, ℓ),
K0 := Kℓ, K1 ←R K, and returns (Cℓ, Kβ). On input i ∈ [n], and a label ℓ, the oracle
OShare(i, ℓ) returns Si,ℓ ← SSE.Share(eksse,i, ℓ). On input i ∈ [n], the oracle OCorrupt(i)
returns eksse,i.

We require that the oracle OEncaps is only called on one label ℓ⋆, OShare is never called
on input (i⋆, ℓ⋆), and OCorrupt is never called on i⋆. If this condition is not satisfied, the
experiment outputs 0 instead of α.

Construction of the Secret Sharing Encapsulation

We build an SSE from the DBDH assumption in asymmetric pairing groups, in the random
oracle model, in Figure 6.7.

We stress here that Kℓ is not unique for each label ℓ: whereas Sℓ,i deterministically depends
on ℓ and the slot i, Kℓ is randomized by the random coins r. Hence, with all the shares, using
a specific Cℓ one can recover the associated Kℓ. Correctness follows from the fact that the
above decapsulated key Kℓ is equal to

e


∑

i∈[n]

ti · H(ℓ), [r]2


 = e


H(ℓ), [r ·

∑

i∈[n]

ti]2


 ,

132 Chapter 6. Multi-Client Inner Product Functional Encryption

SSE.Setup(1λ):

PG := (G1,G2, p, P1, P2)← PGGen(1λ), H : {0, 1}∗ → G1 be a full domain hash function modeled
as a random oracle.
For all i ∈ [n], ti ←R Zp, eksse,i := ti, pksse = (PG, H, [

∑
i∈[n] ti]2).

Return (pksse, (eksse,i)i∈[n]).

SSE.Share(pksse, eksse,i, ℓ):
Return Sℓ,i := ti · H(ℓ) ∈ G1.

SSE.Encaps(pksse, ℓ):
r ←R Zp, Cℓ := [r]2, Kℓ := e(H(ℓ), r ·∑i∈[n] ti). Return (Cℓ, Kℓ).

SSE.Decaps(pksse, (Si,ℓ)i∈[n], ℓ, Cℓ):

Return Kℓ := e(
∑

i∈[n] Sℓ,i, Cℓ).

Figure 6.7: SSE based on DBDH in asymmetric pairing groups.

where the pair (Cℓ, Kℓ) has been generated by the same SSE.Encaps call, with the same random
r. The intuition for the security is that given all the Sℓ,i = ti ·H(ℓ) for a label ℓ, one can recover
the masks Kℓ = e(H(ℓ), [r ·∑i∈[n] ti]2) using Cℓ = [r]2. However if Sℓ,i is missing for one slot
i, then all the encapsulation keys Kℓ are pseudo-random, from the DBDH assumption.

Our construction is reminiscent from the Identity-Based Encryption from [BF01], where
a ciphertext for an identity ℓ is of the form e(H(ℓ), [msk · r]2) for a random r ←R Zp, and a
functional decryption key for identity ℓ is of the form H(ℓ)msk. In our construction, we share
the master secret msk into the {ti}i∈[n], and each Sℓ,i represents a share of the functional
decryption key for identity ℓ.

Security proof.

Theorem 17: 1-label-IND security of SSE

The SSE scheme presented in Figure 6.7 is 1-label-IND secure under the DBDH assump-
tion, in the random oracle model.

Proof of Theorem 17. We build a PPT adversary B such that

Adv1-label-IND
SSE,A (λ) ≤ (1 + qH) · Adv

qEnc-DBDH
PG,B (λ),

where qH denotes the number of calls to the random oracle prior to any query to OEncaps,
either direct calls, or indirect via OShare. The integer qEnc denotes the number of calls to
the oracle OEncaps. We will then conclude using the random self reducibility of the DBDH
assumption (see Lemma 4).

The adversary B receives a qEnc-fold DBDH challenge
(
PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[qEnc]

)
,

where qEnc denotes the number of queries of A to its oracle OEncaps, and receives i⋆ ∈ [n] from
A.

Then, B guesses ρ ←R {0, . . . , qH}. Intuitively, ρ is a guess on when the random oracle is
going to be queried on ℓ⋆, the first label used as input to OEncaps (without loss of generality, we
can assume OEncaps is queried at least once by A, otherwise the security is trivially satisfied),
with ρ = 0 indicating that the adversary never queries H on ℓ⋆ before querying OEncaps.

Then, B samples ti ←R Zp and sets eksse,i := ti for all i ∈ [n], i 6= i⋆, and sets [ti⋆]2 := [b]2.
It returns pksse := (PG, [

∑
i∈[n] ti]2) to A.

For any query OCorrupt(i): if i 6= i⋆, B returns eksse,i, otherwise B stops simulating the
experiment for A and returns 0 to its own experiment.

6.4 Strengthening the Security of MCFE Using SSE 133

For any query to the random oracle H, if this the ρ’th new query, then B sets H(ℓρ) := [a]1.
For others queries, B outputs [h]1 for a random h ←R Zp. B keeps track of the queries and
outputs to the random oracle H, so that it answers two identical queries with the same output.

For any query to OEncaps(ℓ): if ℓ has never been queried to the random oracle H before
(directly, or indirectly via OShare) and ρ = 0, then B sets H(ℓ) := [a]1; if ℓ was queried to
random oracle as the ρ’th new query (again, we consider direct and indirect queries to H, the
latter coming from OShare), then we already have H(ℓ) = [a]1. In both cases, B sets Cℓ ← [cj]2,
for the next index j in the qEnc-fold DBDH instance, computes Kℓ ← [sj]T + e([a]1, (

∑
i6=i⋆ ti) ·

[cj]2), and returns (Cℓ, Kℓ) to A. Otherwise, the guess ρ was incorrect: B stops simulating
the experiment for A, and returns 0 to its own experiment. Moreover, if A ever calls OEncaps

on different labels ℓ, then B stops simulating this experiment for A and returns 0 to its own
experiment.

For any query to OShare(i, ℓ): if the random oracle has been called on ℓ, then B uses the
already computed input H(ℓ); otherwise, it computes H(ℓ) for the first time as explained above.
If i = i⋆ and ℓ = ℓρ, then B stops simulating the experiment for A and returns 0 to its own
experiment. Otherwise, that means either i 6= i⋆, in which case B knows ti ∈ Zp, or ℓ 6= ℓρ, in
which case B the discrete logarithm of H(ℓ). In both cases, B can compute Sℓ,i := ti ·H(ℓ) ∈ G1,
which it returns to A.

At the end of the experiment, B receives the output α from A. If its guess ρ was correct,
B outputs α to its own experiment, otherwise, it ignores α and returns 0.

When B’s guess is incorrect, it returns 0 to its experiment. Otherwise, when it is given
as input a real qEnc-fold DBDH challenge, that is sj = abcj for all indices j ∈ [qEnc], then B
simulates the 1-label-IND security game with b = 0. Indeed, since b = ti⋆ , for the j-th query
to OEncaps, we have:

Kℓ⋆ = [sj]T + e([a]1, (
∑

i6=i⋆

ti) · [cj]2) = [abcj]T + e([a]1, (
∑

i6=i⋆

ti) · [cj]2)

= e([a]1, [bcj]2) + e([a]1, (
∑

i6=i⋆

ti) · [cj]2) = e([a]1, [bcj]2 + (
∑

i6=i⋆

ti) · [cj]2)

= e([a]1, (b +
∑

i6=i⋆

ti) · [cj]2) = e([a]1, (
∑

i

ti) · [cj]2) = e(H(ℓ⋆), cj · T2)

where Cℓ⋆ = [cj]2. When given as input a a random qEnc-fold DBDH challenge, the simulation
corresponds to the case b = 1. Finally, we conclude using the fact that the guess ρ is correct
with probability exactly 1

qH+1 .

Strengthening the Security of MCFE Using SSE

We now show how we can enhance the security of any MCFE for any set of functionality
{Fn}n∈N, using a Secret Sharing Layer as defined in Section 6.3. Namely, we show that the
construction from Figure 6.8 is xx-AD-IND secure if the underlying MCFE is xx-AD-IND
secure, for any xx ∈ {one,many}, thereby removing the complete-ciphertext restriction. We
stress our transformation is not restricted to MCFE for inner product, but works for any
functionality.

Generic construction of xx-AD-IND security for MCFE

We present an xx-AD-IND secure MCFE, where xx ∈ {one,many}, for the set of functionalities
{Fn}n∈N, from any xx-AD-IND-weak secure MCFE for {Fn}n∈N, 1-label-IND secure SSE, and
symmetric encryption scheme. The generic construction is presented in Figure 6.8.

134 Chapter 6. Multi-Client Inner Product Functional Encryption

Setup(1λ, Fn):

(pk′, msk′, (ek′
i)i∈[n])← Setup′(1λ, Fn), (pksse, (eksse,i)i∈[n])← SSE.Setup(1λ).

pk := (pk′, pksse), msk := msk′, and for all i ∈ [n], eki := (ek′
i, eksse,i).

Return (pk, msk, (eki)i∈[n]).

Enc(pk, eki, xi, ℓ):

C ′
ℓ,i ← Enc′(pk′, ek′

i, xi, ℓ), (Cℓ, Kℓ) ← SSE.Encaps(pksse, ℓ), Sℓ,i ← SSE.Share(pksse, eksse,i, ℓ).
Return the ciphertext Cℓ,i := (Dℓ,i := SEnc(Kℓ, C ′

ℓ,i), Cℓ, Sℓ,i).

KeyGen(pk, msk, k):

Return KeyGen′(msk′, k).

Dec
(
pk, dkk, {Cℓ,i}i∈[n], ℓ):

For all i ∈ [n], parse Cℓ,i = (Dℓ,i, Cℓ, Sℓ,i). Compute Kℓ ← SSE.Decaps(pksse, (Sℓ,i)i∈[n], ℓ, Cℓ). For
all i ∈ [n], computes C ′

ℓ,i ← SDec(Kℓ, Dℓ,i).
Return Dec′(pk′, dkk, {C ′

ℓ,i}i∈[n]).

Figure 6.8: MCFE with xx-AD-IND security from any 1-label-xx-IND secure MCFE MCFE ′ :=
(Setup′, Enc′, KeyGen′, Dec′), SSE scheme SSE := (SSE.Setup, SSE.Encaps, SSE.Share, SSE.Decaps), and
symmetric encryption SKE := (SEnc, SDec). Here, xx ∈ {one,many}. Recall that the algorithm
SSE.Encaps is randomized, thus, different invocation of SSE.Encaps(pksse, ℓ) on the same input will
produce different outputs.

Correctness: follows straightforwardly from the correctness of the underlyingMCFE ′, SSE
and SKE .

Security proof.

Theorem 18: Security

The MCFE from Figure 6.8 is xx-AD-IND secure assuming MCFE ′ is xx-AD-IND-weak
secure, SSE is 1-label-IND secure, and SKE is one-time secure.

We stress that this security result keeps all the properties of MCFE ′ and SSE :

• if MCFE ′ and SSE are both secure against adaptive corruptions, then, so is MCFE ;

• if MCFE ′ is many time secure (xx = many), then, so is MCFE .

Proof of Theorem 18. The proof uses a hybrid argument that goes over all the labels ℓ1, . . . , ℓL

used as input to the queries A makes to the oracle OEnc. We define the hybrid games Gρ,
for all ρ ∈ {0, . . . , L} in Figure 6.9. For any hybrid game Gρ, we denote by AdvGρ(A) the
probability that the game Gρ outputs 1 when interacting with A. Note that Advxx-AD-IND

MCFE,A (λ) =
|AdvG0(A) − AdvGL

(A)|. Lemma 42 states that for all i ∈ [L], |AdvGi−1
(A) − AdvGi

(A)| is
negligible, which concludes the proof.

6.4 Strengthening the Security of MCFE Using SSE 135

Games Gρ, G⋆
ρ, Hρ,β , for all ρ ∈ {0, . . . , L}:

i⋆ ←R {0, . . . , n} , (pk′, msk′, (ek′
i)i∈[n]) ← Setup′(1λ, Fn), (pksse, (eksse,i)i∈[n]) ← SSE.Setup(1λ),

pk := (pk′, pksse), msk := msk′, and for all i ∈ [n], eki := (ek′
i, eksse,i).

α← AOEnc(·,·,·),OKeygen(·),OCorrupt(·)(pk)
Return α if Condition 1 from Definition 25 is satisfied,

and:
(i⋆ 6= 0 is never queried to OCorrupt and (ℓρ+1, i⋆) is never part of a query to OEnc) OR
(i⋆ = 0 and OEnc is queried on all slots i ∈ HS for label ℓρ+1)

;

0 otherwise.

OEnc(i, (x0
i , x1

i), ℓj):
If j ≤ ρ, C ′

ℓj ,i ← Enc′(pk′, ek′
i, x1

i , ℓj). If j > ρ, C ′
ℓj ,i ← Enc′(pk′, ek′

i, x0
i , ℓj).

(Cℓj
, Kℓj

)← SSE.Encaps(pksse, ℓj), Sℓj ,i ← SSE.Share(pksse, eksse,i).

If j = ρ, C ′
ℓj ,i ← Enc′(pk′, ek′

i, xβ
i , ℓj), Kℓj

←R K .

Return (Dℓj ,i := SEnc(Kℓj
, C ′

ℓj ,i), Cℓj
, Sℓj ,i).

OKeygen(k): return KeyGen(msk, k)

OCorrupt(i): return eki

Figure 6.9: Games for the proof of Theorem 18. Here, HS := [n] \ CS, the set of honest slots,
where CS is the set of slots queried to OCorrupt. Recall that the algorithm SSE.Encaps is
randomized, thus, different invocation of SSE.Encaps(pksse, ℓj) on the same input will produce
different outputs.

136 Chapter 6. Multi-Client Inner Product Functional Encryption

Lemma 42: From game Gρ−1 to game Gρ

For any PPT adversary A, for all ρ ∈ [L], there exist PPT adversaries Bρ, B′ρ, and B′′ρ
such that:

|AdvGρ−1(A)− AdvGρ(A)| ≤ (n + 1) ·
(

Advxx-AD-IND-weak
MCFE,Bρ

(λ)+
2 · Adv1-label-IND

SSE,B′
ρ

(λ) + qe · AdvOT
SKE,B′′

ρ
(λ)

)
,

where qe denotes the number of queries to OEnc.

Proof of Lemma 42. Two cases can happen between games Gρ−1 and Gρ, for each ρ ∈ [L]:
either all the challenge ciphertexts are generated under ℓρ or not all of them. We first make
the guess, and then deal with the two cases: if they are all generated (for honest slots, that
is, slots that are not queried to OCorrupt), we use the xx-AD-IND-weak security of MCFE ′,
otherwise there is an honest slot i⋆ for which the ciphertext has not been generated, and we
use the 1-label-IND security of SSE , together with the one-time security of the symmetric
encryption scheme.

Guess of the Case for the ℓρ: We define a new sequence of hybrid games G⋆
ρ for all

ρ ∈ {0, . . . , L}, which is exactly as Gρ, except that a guess for the missing honest-slot ciphertext
i⋆ under ℓρ is performed (i⋆ = 0 means that all the honest-client ciphertexts are expected to
be generated under ℓρ). Recall that a slot is called honest if it is not queried to OCorrupt.
The games are presented in Figure 6.9. Since G⋆

ρ and Gρ are the same unless the guess is
incorrect, which happens with probability exactly 1/(n + 1), for any adversary A: AdvGρ(A) =
(n + 1) · AdvG⋆

ρ
(A).

All the ciphertexts are generated under ℓρ: We build a PPT adversary Bρ against the
xx-AD-IND-weak security of MCFE ′ such that

|AdvG⋆
ρ−1

(A ∧ i⋆ = 0)− AdvG⋆
ρ
(A ∧ i⋆ = 0)| ≤ Advxx-AD-IND-weak

MCFE ′ (Bρ).

The adversary Bρ simulates A’s view as follows:

• First, it obtains pk′ from its own xx-AD-IND-weak security game for MCFE ′, samples
(pksse, (eksse,i)i∈[n])← SSE.Setup(1λ) and returns pk = (pk′, pksse) to the adversary A.

• OEnc(i, (x0, x1), ℓj): if j < ρ, it uses its own encryption oracle OEnc′ to get C ←
OEnc′(i, (x1, x1), ℓj); if j > ρ, it uses its own encryption oracle OEnc′ to get C ←
OEnc′(i, (x0, x0), ℓj); if j = ρ, then it uses its own encryption oracle to get C ←
OEnc′(i, (x0, x1), ℓρ). Then, it computes (Cℓj

, Kℓj
) ← SSE.Encaps(pksse, ℓj), and Sℓj ,i

← SSE.Share(eksse,i, ℓj). Finally, it computes and returns the ciphertext (SEnc(Kℓj
, C),

Cℓj
, Sℓj ,i).

• OKeygen(k): it uses its own oracle to get dk′k ← OKeygen′(k), which it returns to A.

• OCorrupt(i): it uses its own corruption oracle to get ek′i ← OCorrupt′(i), and returns
eki = (ek′i, eksse,i).

• Finally, Bρ checks that OEnc is queried on all slots i ∈ HS for label ℓρ. If this is the case,
it forwards the output α from A. Otherwise, it returns 0 to its own experiment.

First, note that when simulating A’s view, Bρ only queries its encryption oracle on input
(x0, x1) with x0 6= x1 for a unique label ℓρ. Moreover, when the guess i⋆ = 0 is correct, then the
extra condition from Definition 25 is satisfied: OEnc is queried for label ℓρ on all slots i ∈ HS

6.4 Strengthening the Security of MCFE Using SSE 137

(that is, all slots which are not queried to OCorrupt). Thus, we can use the xx-AD-IND-weak
security of MCFE ′ to switch Enc′(pk′, ek′i, x0, ℓρ), as in game G⋆

ρ−1 to Enc′(pk′, ek′i, x1, ℓρ), as
in game G⋆

ρ.

Some ciphertexts are missing under ℓρ: For β ∈ {0, 1}, we define the games Hρ,β for all
ρ ∈ {0, . . . , L}, and β ∈ {0, 1}, as G⋆

ρ, except that OEnc(i, (x0, x1), ℓρ) computes the encryption
of xβ, and samples Kℓρ ←R K instead of using (Cℓρ , Kℓρ)← SSE.Encaps(pksse, ℓ). These games
are described in Figure 6.9.

Now, we build PPT adversaries Bρ,0 and Bρ,1 against the 1-label-IND security of SSE such
that:

|AdvG⋆
ρ−1

(A ∧ i⋆ 6= 0)− AdvHρ,0(A ∧ i⋆ 6= 0)| ≤ Adv1-label-IND
SSE,Bρ,0

(λ);

|AdvG⋆
ρ
(A ∧ i⋆ 6= 0)− AdvHρ,1(A ∧ i⋆ 6= 0)| ≤ Adv1-label-IND

SSE,Bρ,1
(λ).

Let β ∈ {0, 1}. We proceed to describe Bρ,β . First, Bρ,β samples the guess i⋆ ←R {0, . . . , n}. If
i⋆ = 0, then Bρ,β behaves exactly as the game G⋆

ρ−1+β. Otherwise, it does the following, using
the 1-label-IND security game against SSE :

• First, it generates (pk′, msk′, (ek′i)i∈[n]) ← Setup′(1λ), and sends i⋆ to receive pksse from
its own experiment. It returns pk = (pk′, pksse) to the adversary A.

• OEnc(i, (x0, x1), ℓj): if j < ρ, it computes C = Enc′(pk′, ek′i, x1, ℓj); if j > ρ, it computes
C = Enc′(pk′, ek′i, x0, ℓj); and if j = ρ, it computes C = Enc′(pk′, eki, xβ, ℓj). Then it
calls its own oracle to get Sℓj ,i = OShare(i, ℓj). If j 6= ρ, it computes (Cℓj

, Kℓj
) ←

SSE.Encaps(pksse, ℓj), if j = ρ it calls (Cℓρ , Kℓρ) ← OEncaps(ℓρ). Finally, it returns the
ciphertext (SEnc(Kℓj

, C), Cℓj
, Sℓj ,i).

• OKeygen(k): it returns KeyGen′(msk′, k).

• OCorrupt(i): it uses its own corruption oracle to get eksse,i ← OCorrupt(i), and returns
eki = (ek′i, eksse,i).

• Finally, Bρ,β forwards A’s output α to its own experiment.

Game G⋆
ρ, which encrypts x1 under ℓρ just differs from Hρ,1 with real vs. random keys Kℓρ , as

emulated by Bρ,1, according to the real-or-random behavior of the 1-label-IND game for SSE .
Game G⋆

ρ−1, which encrypts x0 under ℓρ just differs from Hρ,0 with real vs. random keys Kℓρ ,
as emulated by Bρ,0, according to the real-or-random behavior of the 1-label-IND game for
SSE . Note that if adversary A makes queries that satisfy condition 1 and that the guess i⋆

is correct, and different from 0, then the queries of Bρ,β satisfy the conditions required by the
1-label-IND security game for SSE , namely, OEncaps is only queried on one label ℓρ, OCorrupt

is never queried on i⋆, and OShare is never queried on (i⋆, ℓρ).
Since the encapsulation keys Kℓρ are uniformly random in games Hρ,0 and Hρ,1, we can use

the one-time security of SKE , for each ciphertext for the label ℓρ, to obtain a PPT adversary
B′′ρ such that:

|AdvHρ,0(A ∧ i⋆ 6= 0)− AdvHρ,1(A ∧ i⋆ 6= 0)| ≤ qe · AdvOT
SKE,B′′

ρ
(λ),

where qe denotes maximum number of ciphertexts generated under a label.
Putting everything together, for the case i⋆ 6= 0, we obtain PPT adversaries B′ρ and B′′ρ

such that:

|AdvG⋆
ρ−1

(A ∧ i⋆ 6= 0)− AdvG⋆
ρ
(A ∧ i⋆ 6= 0)| ≤ 2 · Adv1-label-IND

SSE (B′ρ) + qe · AdvOT
SKE(B′′ρ))

Since for any game G and any adversary A, AdvG(A) = AdvG(A∧ i⋆ = 0) + AdvG(A∧ i⋆ 6= 0),
this concludes the proof of Lemma 42.

138 Chapter 6. Multi-Client Inner Product Functional Encryption

Decentralizing MCFE

In decentralized MCFE, the master secret key msk is split into [n] secret keys ski, on for each
client and the generation of the functional decryption keys is distributed among the clients.
We focus on non-interactive protocols to generate the decryption keys, namely, clients can first
run independently an algorithm KeyGenShare that only requires the secret key eki, and that
generates a partial key. Then, all these partial decryption keys can be combined via KeyComb,
that only requires the public key. This way, there is no need for different clients to interact
with each other. The master secret key is only used during the setup. See Definition 26 for
further details.

The correctness property essentially states the combined key corresponds to the functional
decryption key. The security model is quite similar to the one for MCFE, except that

• for the KeyGen protocol: the adversary has access to transcripts of the communications,
thus modeled by a query OKeyShare(i, f) that executes KeyGenShare(ski, f).

• corruption queries additionally reveal the secret keys ski;

• the distributed key generation must guarantee that without all the shares, no information
is known about the functional decryption key.

Distributed Sum

In the MCFE for inner product from Section 6.1 the functional decryption keys are of the form
dky =

(
y,
∑

i S⊤i yi

)
, and msk = {Si}i∈[n]. We split the master secret key into ski := Si for

all i ∈ [n], and we use a non-interactive prototol to compute the sum of all the S⊤i yi, each of
which can be computed by each client i ∈ [n] independently.

The same protocol can be used to decentralize the setup of the SSE scheme from Section 6.3,
since the public key pksse contains [

∑
i ti]2.. In this section, we present such a protocol that is

similar to [KDK11].

Definition 30: Ideal Protocol DSum

A DSum on abelian groups G, G′ among n senders is defined by three algorithms:

• DSSetup(1λ): Takes as input the security parameter 1λ. Generates the public pa-
rameters pp and the personal secret keys ski for all i ∈ [n].

• DSEncode(xi, ℓ, ski): Takes the group element xi ∈ G to encode, a label ℓ, and the
personal secret key ski of the user i. Returns the share Mℓ,i ∈ G′

• DSCombine({Mℓ,i}i∈[n]): Takes the shares {Mℓ,i}i∈[n] , and returns the value
∑

i Mℓ,i ∈
G′.

Correctness. For any label ℓ, we want Pr[DSCombine({Mℓ,i}i∈[n]) =
∑

i xi] = 1, where
the probability is taken over Mℓ,i ← DSEncode(xi, ℓ, ski) for all i ∈ [n], and (pp, (ski)i) ←
DSSetup(1λ) .

Security Notion. This protocol must guarantee the privacy of the xi’s, possibly excepted
their sum when all the shares are known. This is the classical security notion for multi-party
computation, where the security proof is performed by simulating the view of the adversary
from the output of the result: nothing when not all the shares are asked, and just the sum of
the inputs when all the shares are queried. We also have to deal with the corruptions, which
give the users’ secret keys.

6.5 Decentralizing MCFE 139

Our DSum Protocol

We present a DSum protocol for n users, with groups G = G′ = Zm
p . The security relies on the

CDH assumption in a group G of primer order p. Similar protocol can be found in [KDK11].

• DSSetup(1λ): generates G := (G, p, P)← GGen(1λ), and a hash function H onto Zm
p . For

all i ∈ [n], ti ←R Zp, ski := ti, pp := (G, H, ([ti])i). It returns pp, {ski}i∈[n].

• DSEncode(xi ∈ Zm
p , ℓ, ski): computes hℓ,i,j = H([tmin{i,j}], [tmax{i,j}], ti · [tj], ℓ) = hℓ,j,i ∈

Zm
p for all i, j ∈ [n], and returns:

Mℓ,i = xi −
∑

j<i

hℓ,i,j +
∑

j>i

hℓ,i,j .

• DSCombine({Mℓ,i}i∈[n]): returns
∑

i Mℓ,i.

Correctness. The correctness should show that the sum of the shares is equal to the sum
of the xi’s: the former is equal to

∑

i


xi −

∑

j<i

hℓ,i,j +
∑

j>i

hℓ,i,j


 =

∑

i

xi −
∑

i

∑

j<i

hℓ,i,j +
∑

i

∑

j>i

hℓ,j,i

=
∑

i

xi −
∑

i

∑

j<i

hℓ,i,j +
∑

j

∑

i<j

hℓ,j,i =
∑

i

xi

Security Analysis

We will prove that there exists a simulator that generates the view of the adversary from the
output only. In this proof, we will assume static corruptions (the set CS of the corrupted
clients is known from the beginning) and the hardness of the CDH problem. However, this
construction will only tolerate up to n−2 corruptions, so that there are at least 2 honest users.
But this is also the case for the MCFE.

W.l.o.g., we can assume that HS = {1, . . . , n− c} and CS = {n− c + 1, . . . , n}, by simply
reordering the clients, when CS is known. We will gradually modify the behavior of the
simulator, with less and less powerful queries. At the beginning, the DSEncode-query takes all
the same inputs as in the real game, including the secret keys. At the end, it should just take
the sum (when all the queries have been asked), as well as the corrupted xj ’s.

Game G0: The simulator runs as in the real game, with known CS.

Game G1: The simulator is given a pair ([t], [t2]).

• DSSetup: for all 1 ≤ i ≤ n− c: αi ←R Zp, [ti] := [t + αi]. For all n− c < i ≤ n: ti ← Zp.
For all 1 ≤ i, j ≤ n − c, Yi,j := [t2 + (αi + αj) · t + αiαj]. For all 1 ≤ i ≤ n − c, and
n− c < j ≤ n, Yi,j := [(t + αi)tj], and Yj,i = Yi,j . For all n− c < i, j ≤ n, Yi,j := [ti · tj].
It returns pp := {[ti]}i∈[n] and the secret keys ti of the corrupted users.

• DSEncode(xi, ℓ): the simulator generates all the required hℓ,i,j using the Xj ’s and Yi,j ’s,
querying the hash function, and returns Mℓ,i = xi −

∑
j<i hℓ,i,j +

∑
j>i hℓ,i,j .

140 Chapter 6. Multi-Client Inner Product Functional Encryption

Game G2: The simulator does as above, but just uses a random [t′]←R G instead of [t2], to
answer the DSEncode-queries.

This can make a difference for the adversary if the latter asks for the hash function on some
tuple (Xmin{i,j}, Xmax{i,j}, [ti ·tj], ℓ), for i, j ≤ n−c, as this will not be the value hℓ,i,j , which has
been computed using Yi,j 6= [ti ·tj]. In such a case, one can find [ti ·tj] = [t2+(αi+αj)·t+αiαj in
the list of the hash queries, and thus extract t2 = [t2]. As a consequence, under the hardness of
the square Diffie-Hellman problem (which is equivalent to the CDH problem), this simulation
is indistinguishable from the previous one.

Game G3: The simulator does as above excepted for the DSEncode-queries. If this is not the
last-honest query under label ℓ, the simulator returns Mℓ,i = −∑j<i hℓ,i,j +

∑
j>i hℓ,i,j ; for the

last honest query, it returns Mℓ,i = SH −
∑

j<i hℓ,i,j +
∑

j>i hℓ,i,j , where SH =
∑

j∈HS xj .
Actually, for a label ℓ, if we denote iℓ the index of the honest player involved in the last

query, the view of the adversary is exactly the same as if, for every i 6= iℓ, we have replaced
hℓ,i,iℓ

by hℓ,i,iℓ
+xi (if iℓ > i) or by hℓ,i,iℓ

−xi (if iℓ < i). We thus replace uniformly distributed
variables by other uniformly distributed variables: this simulation is perfectly indistinguishable
from the previous one.

Game G4: The simulator now ignores the values hℓ,i,j for honest i, j. But for each label, it
knows the corrupted xj ’s, and can thus compute the values Mℓ,j for the corrupted users, using
the corrupted xj ’s and secret keys. If this is not the last honest query, it returns a random
Mℓ,i. For the last honest query, knowing S =

∑
j xj , it outputs Mℓ,i = S −∑j 6=i Mℓ,j .

As in the previous analysis, if one first sets all the hℓ,i,j , for j 6= iℓ, this corresponds to
define hℓ,i,iℓ

from Mℓ,i, for i 6= iℓ.

Application to DMCFE for Inner Products

One can convert the MCFE from Section 6.1 whose decryption keys are of the form
∑

i S⊤i yi

into an decentralized MCFE. Each client computes S⊤i yi independently, and we use the DSum

protocol to compute the sum, where the label is the vector y itself. Namely, we have:

• KeyGenShare(ski, y := (y1‖ · · · ‖yn)): outputs My,i ← DSEncode(S⊤i yi, y, ski);

• KeyComb((My,i)i∈[n], y): outputs dky = (y, dy), where dy is publicly computed as
DSCombine({My,i}i∈[n]);

Using the last simulation game, we can now show that all the KeyGenShare(ski, y) are first
simulated at random, and just the last query needs to ask the KeyGen-query to the MCFE
scheme to get the sum and program the output. Hence, unless all the honest queries are asked,
the functional decryption key is unknown.

Consequently, we can convert the MCFE from Section 6.1 into a decentralized MCFE.
Note that the transformation from Section 6.2 and Section 6.4, which remove the one chal-
lenge ciphertext restriction, and the incomplete ciphertext restriction, respectively, preserve
the decentralized feature of the DCMFE obtained from using the DSum on the MCFE from
Section 6.1. At the end, combining all transformations, we obtain a decentralized MCFE for
inner product that is many-AD-IND secure.

Decentralizing the setup. Note that the setup of the MCFE from Section 6.1 is already
decentralized, in the sense that each eki, mski can be generated independently for all i ∈ [n],
and dynamically (the users only have to agree on a particular group and hash function to use).
Applying the transformation from Section 6.2 preserves that feature, since an independent
single-input FE is used for each slot i ∈ [n]. Finally, the SSE from Section 6.3 can have a
distributed setup if we use a DSum protocol to compute the value [

∑
i ti]2 from the public key

pksse. Consequently, we obtain a scheme where there is no need of a trusted authority.

Chapter 7

Functional Encryption for Quadratic

Functions

In this section, we present the first public-key FE scheme based on a standard assump-
tion that supports a functionality beyond inner product, or predicates. In our scheme, ci-
phertexts are associated with a set of values, and secret keys are associated with a degree-
two polynomial. This way, the decryption of a ciphertext ct(x1,...,xn)∈Zn

p
with a secret key

dkP∈Zp[X1,...,Xn],deg(P)≤2 recovers P (x1, . . . , xn). The ciphertext size is O(n) group elements,
improving upon [ABDP15, ALS16], which would require O(n2) group elements, since they build
an FE scheme for inner product. Our FE scheme is proved selectively secure under the Matrix
Diffie-Hellman assumption [EHK+13], which generalizes standard assumptions such as DLIN
or k-Lin for k ≥ 1, and the 3-PDDH assumption [BSW06]. Constructions whose security is
justified in the generic group model can be found in [BCFG17, DGP18]. See also [Lin17, AS17]
for private-key variants. The state of the art for functional encryption for quadratic functions
is summarized in Figure 7.1.

Overview of our construction

The difficulty is to have ciphertexts ct(x1,...,xn) of O(n) group elements, that must hide the
message (x1, . . . , xn) ∈ Zn

p , but still contain enough information to recover the n2 values xi ·xj

for i, j ∈ [n]. To ensure the message is hidden, the ciphertext will contain an encryption of each
value xi. Since we want to multiply together these encryptions to compute products xi ·xj , and
since these encryption are composed of group elements, we require a pairing e : G1×G2 → GT ,
where G1, G2, and GT are additively written, prime-order groups. Namely, decryption pairs
encrypted values in G1 with encrypted values in G2. For this reason, it makes sense to re-write

References security public or private key

[AS17] sel. GGM private-key

[Lin17] sel. SXDH private-key

[BCFG17, DGP18] ad. GGM public-key

[BCFG17] sel. standard public-key

Figure 7.1: Existing functional encryption for quadratic functions. Here, ad. and sel. de-
note adaptive and selecive security respectively, SXDH stands for Symmetric eXternal Diffie
Hellman assumption, and GGM stands for Generic Group Model.

141

142 Chapter 7. Functional Encryption for Quadratic Functions

the function as: X := Zn
p × Zm

p , K := Zn·m
p , and for all (x, y) ∈ X , α ∈ K,

F ((x, y), α) =
∑

i∈[n],j∈[m]

αi,jxiyj .

Private-key, one-ciphertext secure FE. Our starting point is a private-key FE for inner
product, that is only secure for one challenge ciphertext:

ct(x,y) := {[Ari + b⊥xi]1}i∈[n], {[Bsj + a⊥yj]2}j∈[m], dkα := [
∑

i,j

αi,jr⊤
i A⊤Bsj]T ,

where A, B←R Dk, and (A|b⊥), (B|a⊥) are bases of Zk+1
p such that a⊥ ∈ orth(A) and b⊥ ∈

orth(B), à la [CGW15]. The vectors [Ari]1 and [Bsj]2 for i ∈ [n], j ∈ [m], a⊥ and b⊥ are part of
a master secret key, used to (deterministically) generate ctx,y and dkα. Correctness follows from
the orthogonality property: decryption computes

∑
i,j αi,je([Ari + b⊥xi]⊤1, [Bsj + a⊥yj]2) =

dkF + (a⊥)⊤b⊥ · [F (F, (x, y))]T , from which one can extract F (α, (x, y)) since [(a⊥)⊤b⊥]T is
public, simply by enumerating all the possible values for F (α, (x, y)). This is efficient as long
as the output always lies in a polynomial size domain.

Security relies on theDk-MDDH Assumption [EHK+13], which stipulates that given [A]1, [B]2
drawn from a matrix distribution Dk over Z

(k+1)×k
p ,

[Ar]1 ≈c [u]1 ≈c [Ar + b⊥]1 and [Bs]2 ≈c [v]2 ≈c [Bs + a⊥]2,

where r, s←R Zk
p, and u, v←R Zk+1

p . This allows us to change ct(x(0),y(0)) into ct(x(1),y(1)), but

creates an extra term
[
x(1)⊤Fy(1) − x(0)⊤Fy(0)

]
T

in the secret keys dkα. We conclude the proof

using the fact that for all the α queried to OKeygen, F (α, (x(0), y(0))) = F (α, (x(1), y(1))), as
required by the security definition for FE (see Definition 19), which cancels out the extra term
in all secret keys.

Public-key FE. We now present how to obtain to modify this simple scheme to obtain a
public-key FE.

• In the public-key setting, for the encryption to compute [Ari + b⊥xi] and [Bsj + a⊥yj]
for i ∈ [n], j ∈ [m] and any x ∈ Zn

p , y ∈ Zm
p , the vectors [a⊥]2 and [b⊥]1 would need to be

part of the public key, which is incompatible with the MDDH assumption on [A]1 or [B]2.

To solve this problem, we add an extra dimension, namely, we use bases

(
A|b⊥ 0

0 1

)

and

(
B|a⊥ 0

0 1

)
where the extra dimension will be used for correctness, while (A|b⊥)

and (B|a⊥) will be used for security (using the MDDH assumption, since a⊥ and b⊥ are
not part of the public key anymore).

• To avoid mix and match attacks, the encryption randomizes the bases
(

A|b⊥ 0
0 1

)
and

(
B|a⊥ 0

0 1

)

into

W−1

(
A|b⊥ 0

0 1

)
and W⊤

(
B|a⊥ 0

0 1

)

for W←R GLk+2 a random invertible matrix. This “glues" the components of a ciphertext
that are in G1 to those that are in G2.

• We randomize the ciphertexts so as to contain [Ari ·γ]1 and [Bsj ·σ]2, where γ, σ ←R Zp

are the same for all i ∈ [n], and j ∈ [m], but fresh for each ciphertext. The ciphertexts
also contain [γ · σ]1, for correctness.

7.1 Private-key FE with one-SEL-IND security 143

Related works. We note that the techniques used here share some similarities with Dual
Pairing Vector Space constructions (e.g., [OT08, OT09, Lew12, CLL+13]). In particular, our
produced ciphertexts and private keys are distributed as in their corresponding counterparts
in [OT08]. The similarities end here though. These previous constructions all rely on the
Dual System Encryption paradigm [Wat09], where the security proof uses a hybrid argument
over all secret keys, leaving the distribution of the public key untouched. Our approach, on
the other hand, manages to avoid this inherent security loss by changing the distributions of
both the secret and public keys. Our approach also differs from [BSW06] and follow-up works
[BW06, GKSW10] in that they focus on the comparison predicate, a function that can be
expressed via a quadratic function that is significantly simpler than those considered here.
Indeed, for the case of comparisons predicates it is enough to consider vectors of the form:
[Ari + xib

⊥]1, [Bsj + yja⊥]2, where xi and yj are either 0, or some random value (fixed at
setup time, and identical for all ciphertexts and secret keys), or are just random garbage.

The work of [Lin17, AS17] present constructions of private-key functional encryption schemes
for degree-D poly- nomials based on D-linear maps. As a special case for D = 2, these schemes
support quadratic polynomials from bilinear maps, as ours. Also, in terms of security, the
construction of [Lin17] is proven selectively secure based on the SXDH assumption, while the
scheme of [AS17] is selectively secure based on ad-hoc assumptions that are justified in the
multilinear group model.

In comparison to these works, our scheme has the advantage of working in the (arguably
more challenging) public key setting. [BCFG17] also gave an adaptively secure construction in
the generic group model. We only present the construction whose security is based on standard
assumption. Namely, we start by giving the private-key FE whose security only handles one
challenge ciphertext. We then present the full-fledged public-key FE.

Private-key FE with one-SEL-IND security

We give in Figure 7.2 a private-key FE for quadratic functions, that is, the functionality
F K,X,Y

quad : K × X → Z, with K := [0, K]nm, X := [0, X]n × [0, Y]m, Z := [0, nmKXY], such
that for any α ∈ K, (x, y) ∈ X , we have:

F K,X,Y
quad (α, (x, y)) =

∑

i,j

αi,jxiyj .

For correctness, we require that nmKXY is of polynomial size in the security parameter. The
one-SEL-SIM security relies on the Dk(p)-MDDH assumption in asymmetric pairing groups.

Correctness. For any (x, y) ∈ X , i ∈ [n], j ∈ [m], we have:

e([ci]1, [ĉj]2) = [r⊤
i A⊤Bsj + (b⊥)⊤a⊥xiyj]T ,

since A⊤a⊥ = B⊤b⊥ = 0. Therefore, for any (αi,j)i,j ∈ K, the decryption computes

D := [
∑

i,j

αi,jr⊤
i A⊤Bsj +

∑

i,j

αi,jxiyj · (b⊥)⊤a⊥]T − e(K, [1]2)− e([1]1, K̂)

=
∑

i,j

αi,jxiyj · [(b⊥)⊤a⊥]T .

Note that (b⊥)⊤a⊥ 6= 0 with probability 1− 1
Ω(p) over the choices of A, B←R Dk, a⊥ ←R

orth(A), and b⊥ ←R orth(B) (see Definition 9). Therefore, one can enumerate all possible
v ∈ Z and check if v · [(b⊥)⊤a⊥]T = D. This can be done in time |Z| = nmKXY + 1, which
is of polynomial size in the security parameter.

144 Chapter 7. Functional Encryption for Quadratic Functions

GSetup(1λ, F K,X,Y
quad):

PG := (G1,G2,GT , p, P1, P2, e)←R PGGen(1λ)
Return gpk := PG

Setup(1λ, gpk, F):

A, B ←R Dk, a⊥ ←R orth(A), b⊥ ←R orth(B). For i ∈ [n], j ∈ [m], ri, sj ←R Zk
p.

ek := ([A]1, [b⊥]1, [B]2, [a⊥]2), msk :=
(

A, a⊥, B, b⊥, {ri, sj}i∈[n],j∈[m]

)

Enc(gpk, ek, (x, y) ∈ X):

For i ∈ [n]: ci := Ari + b⊥xi,
For j ∈ [m]: ĉj := Bsj + a⊥yj ,
ct(x,y) := {[ci]1, [ĉj]2}i∈[n],j∈[m]

Return ct(x,y) ∈ G
n(k+1)
1 ×G

m(k+1)
2

KeyGen(gpk, msk, α ∈ K):

u←R Zp, K := [
∑

i∈[n],j∈[m] αi,jr⊤

i A⊤Bsj]1 − [u]1, K̂ := [u]2
Return dkα := (K, K̂) ∈ G1 ×G2

Dec(gpk, ct(x,y), dkα):

D :=
∑

i∈[n],j∈[m] αi,j · e([ci]⊤1 , [ĉj]2)− e(K, [1]2)− e([1]1, K̂).
Return v ∈ Zp such that [v · (b⊥)⊤a⊥]T = D.

Figure 7.2: FEone, a private-key FE for inner product, selectively secure under the Dk(p)-MDDH
assumption in asymmetric pairing groups.

Theorem 19: one-SEL-IND security

The FE from Figure 7.2 is one-SEL-IND secure under the Dk(p)-MDDH assumption in
G1 and G2.

Remark 14: one-SEL-SIM security

WE note that the FE from Figure 7.2 is in fact one-SEL-SIM secure, which implies one-
SEL-IND security. This is clear from the fact that in the last hybrid game in the proof of
Theorem 19, the simulator is only required to know the value αi,jxiyj . Since we only need
one-SEL-IND for our public-key FE, which is the main focus of this chapter, we omit the
one-SEL-SIM security proof of the private-key FE.

Proof of Theorem 19. We use a sequence of hybrid games defined in Figure 7.3. Let A be
a PPT adversary. For any game G, we denote by AdvG(A) the probability that the game G

returns 1 when interacting with A.
Note that we have: Advone-SEL-IND

FEone
(A) = 2 × |AdvG0(A) − 1/2|. This follows from the fact

that for all i ∈ [n], j ∈ [m], we have:

c⊤
i ĉj = r⊤

i A⊤Bsj + x
(β)
i y

(β)
j (b⊥)⊤a⊥.

7.1 Private-key FE with one-SEL-IND security 145

G0, G1, G2 :

(x(0), y(0)), (x(1), y(1))
)
← A(1λ)

PG := (G1,G2,GT , p, P1, P2, e) ←R GGen(1λ), gpk := PG, A, B ←R Dk, a⊥ ←R orth(A), b⊥ ←R

orth(B), pk := [(a⊥)⊤b⊥]T , β ←R {0, 1}. For i ∈ [n], j ∈ [m]: ri ←R Zk
p, sj ←R Zk

p

ci := Ari + x
(β)
i b⊥, ci ←R Gk+1

1

ĉj := Bsj + y
(β)
j a⊥, ĉj ←R Gk+1

2

ct := {[ci]1, [ĉj]1}i∈[n],j∈[m]

β′ ← AOKeygen(·)(gpk, pk, ct)
Return 1 if β′ = β, 0 otherwise.

OKeygen(α ∈ K):

u←R Zp, K := [
∑

i,j αi,jc⊤

i ĉj]1 − [
∑

i,j αi,jx
(β)
i y

(β)
j · (b⊥)⊤a⊥]1 − [u]1, K̂ := [u]2

Return dkα := (K, K̂)

Figure 7.3: Games for the proof of Theorem 19. In each procedure, the components inside a solid
(dotted) frame are only present in the games marked by a solid (dotted) frame.

Thus, in game G0, for all α ∈ Zn×m
p , OKeygen(α) computes:

K :=
∑

i,j

αi,j [c⊤
i ĉj]1 − [

∑

i,j

αi,jx
(β)
i y

(β)
j · (b⊥)⊤a⊥]1 − [u]1

=
∑

i,j

αi,j [r⊤
i A⊤Bsj]1 − [u]1.

Game G1: is the same as game G0 except that the vectors [ci] from the challenge cipher-
text are uniformly random over Gk+1

1 . In Lemma 43 we show that G0 is computationally
indistinguishable from G1 under the Dk(p)-MDDH assumption in G1.

Game G2: is the same as game G1 except that the vectors ĉj from the challenge ciphertext
are uniformly random over Gk+1

2 . In Lemma 44 we show that G1 is computationally indis-
tinguishable from G2 under the Dk(p)-MDDH assumption. Finally, we show in Lemma 45
that the adversary’s view in this game is independent of the bit β, and thus the adversary’s
advantage in this game is zero, which concludes the proof.

Lemma 43: From game G0 to G1

There exists a PPT adversary B0 such that

|AdvG0(A)− AdvG1(A)| ≤ 2 · Adv
Dk(p)-mddh

G1,B0
(λ) + 2−Ω(λ).

Proof of Lemma 43. Here, we use the Dk(p)-MDDH assumption on [A]1 to change the dis-
tribution of the challenge ciphertext, after arguing that one can simulate the game without
knowing a⊥ or [A]2.

Namely, we build a PPT adversary B′0 against the n-fold Dk-MDDH assumption in G1 such
that |AdvG0(A)−AdvG1(A)| ≤ 2 ·Adv

n-Dk(p)-mddh

G1,B0
(λ) + 2−Ω(λ). Then, by Lemma 1, this implies

the existence of a PPT adversary B0 such that |AdvG0(A)−AdvG1(A)| ≤ 2 ·Adv
Dk(p)-mddh

G1,B0
(λ) +

2−Ω(λ).

146 Chapter 7. Functional Encryption for Quadratic Functions

B′
0

(
PG, [A]1, [h1| · · · |hn]1

)
:(

(x(0), y(0)), (x(1), y(1))
)
← A(1λ)

gpk := PG, B←R Dk, b⊥ ←R orth(B), z←R Zk+1
p , pk := [(b⊥)⊤z]T , β ←R {0, 1}. For all j ∈ [m]:

sj ←R Zk
p, ĉj := Bsj + y

(β)
j z. For all i ∈ [n]: ci := hi + x

(β)
i b⊥, ct := {[ci]1, [ĉj]2}i∈[n],j∈[m]

β′ ← A(gpk, pk, ct)
Return 1 if β′ = β, 0 otherwise.

OKeygen(α ∈ Zn×m
p):

u←R Zp, K :=
∑

i,j αi,j [c⊤

i ĉj]1 − [u]1 −
∑

i,j αi,jx
(β)
i y

(β)
j · [(b⊥)⊤z]1, K̂ := [u]2

Return dkα := (K, K̂)

Figure 7.4: Adversary B′
0 against the n-fold Dk(p)-MDDH assumption, for the proof of Lemma 43.

Adversary B′0 simulates the game to A as described in Figure 7.4. We show that when B′0 is
given a real MDDH challenge, that is, [h1| · · · |hn]1 := [AR] for R ←R Zk×n

p , then it simulates
the game G0, whereas it simulates the game G1 when given a fully random challenge, i.e. when
[h1| · · · |hn]1 ←R G

(k+1)×n
1 , which implies the lemma.

We use the following facts.

1. For all s ∈ Zk
p, B ∈ Z

(k+1)×k
p , b⊥ ∈ orth(B), and a⊥ ∈ Zk+1

p , we have:

(b⊥)⊤a⊥ = (b⊥)⊤(Bs + a⊥).

2. For all y
(β)
j ∈ Zp, s ∈ Zk

p:
(
{sj}j∈[m]

)
sj←RZk

p

≡
(
{sj + y

(β)
j s}j∈[m]

)
sj←RZk

p

.

3. (
Bs + a⊥

)
A,B←RDk,a⊥←Rorth(A),s←RZk

p

≈ 1
Ω(p)

(z)
z←RZk+1

p
,

since (B|a⊥) is a basis of Zk+1
p , with probability 1 − 1

Ω(p) over the choices of A, B, and

a⊥ (see Definition 9).

Recall that we use≡ to denote equality of distribution, and≈ε to indicate that two distributions
are statistically ε-close.

Therefore, we have for all y(β) ∈ Zm
p :

(
A, b⊥, {Bsj + y

(β)
j a⊥}j∈[m], (b⊥)⊤a⊥

)

where A, B←R Dk, a⊥ ←R orth(A), b⊥ ←R orth(B), sj ←R Zk
p

≡
(
A, b⊥, {Bsj + y

(β)
j a⊥}j∈[m], (b⊥)⊤(Bs + a⊥)

)

where A, B←R Dk, a⊥ ←R orth(A), b⊥ ←R orth(B), s←R Zk
p , sj ←R Zk

p (by 1.)

≡
(
A, b⊥, {Bsj + y

(β)
j (Bs + a⊥)}j∈[m], (b⊥)⊤(Bs + a⊥)

)

where A, B←R Dk, a⊥ ←R orth(A), b⊥ ←R orth(B), s, sj ←R Zk
p (by 2.)

≈ 1
Ω(p)

(
A, b⊥, {Bsj + y

(β)
j z }j∈[m], (b⊥)⊤ z

)

where A, B←R Dk, a⊥ ←R orth(A), b⊥ ←R orth(B), z←R Zk+1
p , sj ←R Zk

p (by 3.)

7.1 Private-key FE with one-SEL-IND security 147

B1

(
PG, [B]2, [h1| · · · |hm]2

)
:(

(x(0), y(0)), (x(1), y(1))
)
← A(1λ)

gpk := PG, A ←R Dk, β ←R {0, 1}, a⊥ ←R orth(A), v ←R Zp, pk := [v]T . For all i ∈ [n]:
ci ←R Zk+1

p . For all j ∈ [m]: ĉj := hj + y
(β)
j a⊥, ct := {[ci]1, [ĉj]2}i∈[n],j∈[m]

β′ ← AOKeygen(·)(gpk, pk, ct)
Return 1 if β′ = β, 0 otherwise.

OKeygen(α ∈ Zn×m
p):

u←R Zp, K̂ :=
∑

i,j αi,j [c⊤

i ĉj]2 − [u]2 −
∑

i,j αi,jx
(β)
i y

(β)
j · [v]1, K := [u]1

Return dkα := (K, K̂)

Figure 7.5: Adversary B1 against the Dk(p)-MDDH assumption, for the proof of Lemma 44.

Lemma 44: From game G1 to game G2

There exists a PPT adversary B1 such that

|AdvG1(A)− AdvG2(A)| ≤ 2 · Adv
Dk(p)-mddh

G2,B2
(λ) +

2
p− 1

.

Proof of Lemma 44. Here, we use the Dk(p)-MDDH assumption on [B]2 to change the dis-
tribution of the challenge ciphertext, after arguing that one can simulate the game without
knowing b⊥ or [B]1.

Namely, we build a PPT adversary B′1 against the m-fold Dk(p)-MDDH assumption in G2

such that |AdvG1(A)−AdvG2(A)| ≤ 2 ·Adv
m-Dk(p)-mddh

G2,B′
2

(λ). Then, by Lemma 1, this implies the

existence of a PPT adversary B1 such that |AdvG1(A)−AdvG2(A)| ≤ 2 ·Adv
Dk(p)-mddh

G2,B2
(λ)+ 2

p−1 .
Adversary B′1 simulates the game to A as described in Figure 7.5. We show that when B′1 is

given a real MDDH challenge, that is, [h1| · · · |hm]2 := [BS]2 for S←R Zk×m
p , then it simulates

the game G1, whereas it simulates the game G2 when given a uniformly random challenge, i.e.
when [h1| · · · |hm]2 ←R G

(k+1)×m
2 , which implies the lemma.

We use the fact that for all A, B ∈ Z
(k+1)×k
p ,

(B, a⊥, (b⊥)⊤a⊥)a⊥←Rorth(A),b⊥←Rorth(B) ≡ (B, a⊥, v)v←RZp).

Note that the leftmost distribution corresponds to gpk, pk, {ci}i∈[n], and OKeygen distributed
as in games G1 or G2 (these are identically distributed in these two games), while the last
distribution corresponds to gpk, pk, {ci}i∈[n], and OKeygen simulated by B′1.

Finally, when B′1 is given a real MDDH challenge, i.e., when for all j ∈ [m], hj := Bsj , for

sj ←R Zk
p, we have ĉj := Bsj + y

(β)
j a⊥, exactly as in game G1, whereas ĉj is uniformly random

over Zk+1
p when B′1 is given a random challenge, i.e., when for all j ∈ [m], hj ←R Zk+1

p , as in
game G2.

Lemma 45: Game G2

AdvG2(A) = 0.

Proof of Lemma 45. By definition of the security game, for all α queried to OKeygen, we have:∑
i,j αi,jx

(β)
i y

(β)
j =

∑
i,j αi,jx

(0)
i y

(0)
j . Therefore, the view of the adversary in G2 is completely

independent from the random bit β ←R {0, 1}.

148 Chapter 7. Functional Encryption for Quadratic Functions

Public-key FE

We give in Figure 7.6 a public-key FE for quadratic functions, that is, the functionality F K,X,Y
quad

defined in the previous section. It builds upon the private-key from the previous section, as
explained in the overview. We prove one-SEL-IND security, which implies many-SEL-IND
security via a standard argument, since we are in the public-key setting. This is proved under
the Dk(p)-MDDH assumption in both G1 and G2, as well as the 3-PDDH assumption (see
Definition 15).

GSetup(1λ, F K,X,Y
quad):

PG := (G1,G2,GT , p, P1, P2, e)← PGGen(1λ), gpk := PG
Return gpk

Setup(1λ, gpk, F K,X,Y
quad):

A, B←R Dk. For i ∈ [2n], j ∈ [2m], ri, sj ←R Zk
p.

Return pk := {[Ari]1, [Bsj]2}i∈[2n],j∈[2m]

and msk :=
(

A, B, {ri, sj}i∈[2n],j∈[2m]

)

KeyGen(gpk, msk, α ∈ Zn×m
p):

K := [
∑

i∈[n],j∈[m] αi,j

(
r⊤

i A⊤Bsj + r⊤

i+nA⊤Bsj+m

)
]1 − [u]1 ∈ G1

K̂ := [u]2 ∈ G2, where u←R Zp.
Return dkα := (K, K̂) ∈ G1 ×G2

Enc(gpk, pk, (x, y) ∈ Zn
p × Zm

p):

W, V←R GLk+2(p), γ ←R Zp; c0 = ĉ0 := γ; for all i ∈ [n], j ∈ [m]:

ci :=
(

γ ·Ari

xi

)
⊤

W−1, cn+i :=
(

γ ·Arn+i

0

)
⊤

V−1,

ĉj := W

(
Bsj

yj

)
, ĉm+j := V

(
Bsm+j

0

)

ct(x,y) := {[c0]1, [ĉ0]2, [ci]1, [ĉj]2}i∈[2n],j∈[2m] ∈ G
2n(k+2)+1
1 ×G

2m(k+2)+1
2

Dec(gpk, pk, ct(x,y), dkα):

[d]T :=
∑

i∈[n],j∈[m] αi,j

(
e([ci]1, [ĉj]2) + e([cn+i]1, [ĉm+j]2)

)
− e([c0]1, K̂)− e(K, [ĉ0]2)

Return d.

Figure 7.6: FE , a scheme for the functionality F K,X,Y
quad , whose one-SEL-IND security relies on

the Dk(p)-MDDH assumption and 3-PDDH assumption in asymmetric pairing groups.

Correctness. For any (x, y) ∈ X , i ∈ [n], j ∈ [m], we have:

e([ci]1, [ĉj]2) = [γ · r⊤
i A⊤Bsj + xiyj]T .

Moreover, for any i ∈ {n + 1, . . . , 2n}, j ∈ {m + 1, . . . , 2m}, we have:

e([ci]1, [ĉj]2) = [γ · r⊤
i A⊤Bsj]T .

Therefore, for any α ∈ K, the decryption computes

[d]T := [
∑

i,j

αi,jγ · r⊤
i A⊤Bsj +

∑

i,j

αi,jxiyj]T − e(K, [ĉ0]2)− e([c0]1, K̂)

= [
∑

i,j

αi,jxiyj]T .

7.2 Public-key FE 149

Games G0, G1, G2, G3 , G4 , G5 :

(
(x(0), y(0)), (x(1), y(1))

)
← A(1λ)

PG := (G1,G2,GT , p, P1, P2, e) ←R PGGen(1λ), A, B ←R Dk(p), β ←R {0, 1},
a⊥ ←R orth(A), b⊥ ←R orth(B)

For i ∈ [2n], j ∈ [2m]: ri ←R Zk
p, sj ←R Zk

p

gpk := PG, pk :=
{[

Ari + x
(β)
i b⊥

]

1

,

[
Arn+i − x

(0)
i b⊥

]

1

,

[
Bsj + y

(β)
j a⊥

]

2[
Bsm+j + y

(0)
j a⊥

]

2

}
i∈[n],j∈[m]

W←R GLk+2(p), γ ←R Zp; v ←R Zp ; c0 = ĉ0 := γ

ci :=


γAri + γx

(β)
i b⊥ + vx

(β)
i b⊥

x
(β)
i − x

(β)
i




⊤

W−1

cn+i :=


γArn+i − γx

(0)
i b⊥ − vx

(0)
i b⊥

0 + x
(0)
i




⊤

V−1

ĉj := W




Bsj + y
(β)
j a⊥

y
(β)
j − y

(β)
j


; ĉm+j := V




Bsm+j + y
(0)
j a⊥

0 + y
(0)
j




ct := {[c0]1, [ĉ0]2, [ci]1, [ĉj]2}i∈[2n],j∈[2m]

β′ ← AOKeygen(·)(gpk, pk, ct)
Return 1 if β′ = β, 0 otherwise.

OKeygen(α ∈ Zn×m
p):

u←R Zp

K := [
∑

i∈[n],j∈[m] αi,j

(
r⊤

i A⊤Bsj + r⊤

n+iA
⊤Bsm+j

)
]1 − [u]1 ∈ G1

K̂ := [u]2 ∈ G2

Return dkα := (K, K̂) ∈ G1 ×G2

Figure 7.7: Games for the proof of Theorem 20. In each procedure, the components inside
a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray)
frame.

Since
∑

i,j αi,jxiyj ∈ [0, nmKXY] which is of polynomials size, one can efficiently recover the
discrete logarithm d ∈ Z.

Theorem 20: one-SEL-IND security

The scheme from Figure 7.6 is one-SEL-IND secure, assuming the Dk(p)-MDDH assump-
tion in G1 and G2, as well as the 3-PDDH assumption.

Proof of Theorem 20. The proof uses hybrid games defined in Figure 7.7. Let A be a PPT
adversary. For any game G, we denote by AdvG(A) the probability that the game G returns 1
when interacting with A.

Game G0: is such that Advone-SEL-IND
FE,A (λ) = 2×|AdvG0(A)−1/2|. For the sake of the proof, we

look at the public key elements {[Ari]1, [Bsj]2}i∈[2n],j∈[2m] as a ciphertext of the FEone

scheme encrypting vectors (0, 0) ∈ Z2n
p × Z2m

p .

150 Chapter 7. Functional Encryption for Quadratic Functions

Game G1: with the above observation in mind, in this game we change the distribution of the
public key elements so as to be interpreted as an FEone ciphertext encrypting the vectors

(x̃, ỹ) =

((
x(β)

−x(0)

)
,

(
y(β)

y(0)

))
∈ Z2n

p × Z2m
p

In Lemma 46 we show how to argue that game G1 is computationally indistinguishable
from game G0 based on the selective, single-ciphertext security of FEone (that in turn
reduces to Dk(p)-MDDH).

Game G2: in this game we change the distribution of the ci components of the challenge
ciphertext. We switch from using {γAri + x̃i ·γb⊥}i∈[2n] to {γAri + x̃i · (γ + v)b⊥}i∈[2n],
for a random v ←R Zp. In Lemma 47 we prove we can do this switch using the 3-PDDH
assumption.

Game G3 : by using a statistical argument we show that in this game the challenge ciphertexts
can be rewritten as

ci :=

(
γAri + (γ + v)x(β)

i b⊥

0

)⊤

W−1;

cn+i :=

(
γArn+i − (γ + v)x(0)

i b⊥

x
(0)
i

)⊤

V−1;

ĉj := W

(
Bsj + y

(β)
j a⊥

0

)
; ĉm+j := V

(
Bsm+j + y

(0)
j a⊥

y
(0)
j

)
.

This step essentially shows that the change in game G2 made the ciphertexts less depen-
dent on the bit β.

Game G4: in this game we change again the distribution of the challenge ciphertext compo-
nents ci switching from using {γAri + x̃i ·(γ +v)b⊥}i∈[2n] to {γAri + x̃i ·γb⊥}i∈[2n]. This
change is analogous to that introduced in game G2, and its indistinguishability follows
from the 3-PDDH assumption.

The crucial observation is that the public key in this game can be seen as an FEone

ciphertext encrypting vector (x̃, ỹ), while the challenge ciphertext of game G4 can be
seen as an encryption of vectors

((
0

x(0)

)
,

(
0

y(0)

))
∈ Z2n

p × Z2m
p

using such public key. At a high level, the idea is that we moved to a game in which the
dependence on the challenge messages (x(β), y(β)) is only in the public key.

Game G5: in this game we change back the distribution of the public key elements so as to
be interpreted as an FEone ciphertext encrypting vectors (0, 0). The fact that game G3

and game G4 are computationally indistinguishable can be argued based on the selective,
single-ciphertext security of the FEone scheme.

The proof is concluded by arguing that in this game the view of the adversary is inde-
pendent of the bit β.

We now prove the lemmas needed to prove the above theorem.

7.2 Public-key FE 151

Lemma 46: from game G0 to game G1

There exists a PPT adversary B0:

|AdvG0(A)− AdvG1(A)| ≤ 2 · Advone-SEL-IND
FEone,B0

(λ).

Proof of Lemma 46. Using the one-SEL-IND security of the underlying private-key scheme
(which is exactly the scheme in Figure 7.2), we can change the distribution of the public key
elements from {[Ari]1, [Bsj]2}i∈[2n],j∈[2m] to

{
[Ari + x

(β)
i b⊥]1, [Arn+i − x

(0)
i b⊥]1,

[Bsj + y
(β)
j a⊥]2, [Bsm+j + y

(0)
j a⊥]2

}
i∈[n],j∈[m]

In order to apply the one-SEL-IND security of the private-key FE (Theorem19) we rely on the
fact that the public key of FE can be seen as an FEone encryption of longer vectors

x̃(0) = 0 ∈ Z2n
p and ỹ(0) = 0 ∈ Z2m

p in G0,

x̃(1) = (x(β)|| − x(0)) ∈ Z2n
p and ỹ(1) = (y(β)||y(0)) ∈ Z2m

p in G1.

Also, secret keys in FE can be seen as FEone secret keys corresponding to matrices

α̃ =

(
α 0

0 α

)
∈ Z2n×2m

p .

Note that we are using the matrix representation for functions α ∈ Znm
p , since more convenient

here. In particular, for any vector x ∈ Zn
p , y ∈ Zm

p , we denote by x⊤αy =
∑

i,j αi,jxiyj . With
this observation in mind, it can be seen that the restriction

x(1)⊤ α y(1) = x(0)⊤ α y(0)

in the queries made byA translates into legitimate queries by B0 since x(β)⊤ α y(β)−x(0)⊤ α y(0) =
0 and x̃(0)⊤ α̃ ỹ(0) = x̃(1)⊤ α̃ ỹ(1) = 0. Thus, by Theorem 19 (one-SEL-IND security of private-
key scheme), we obtain the lemma.

Lemma 47: From game G1 to game G2

There exists a PPT adversary B1 such that:

|AdvG1(A)− AdvG2(A)| ≤ 2 · Adv3-PDDH
PG,B1

(λ) + 2−Ω(λ).

Here, we change the distribution of the challenge ciphertexts, using the 3-PDDH assump-
tion.

Proof of Lemma 47. Upon receiving a 3-PDDH challenge (PG, [a]1, [b]2, [c]1, [c]2, [z]1) (see Def-
inition 15), and the challenge messages (x(0), y(0)), (x(1), y(1)), B1 picks A, B ←R Dk; β ←R

{0, 1}; a⊥ ←R orth(A), b⊥ ←R orth(B), and sets [γ]1 := [c]1 and [γ]2 := [c]2. Then, for
i ∈ [2n], j ∈ [2m], B2 picks ri ←R Zk

p, sj ←R Zk
p and computes

pk :=
{[

Ari + ax
(β)
i b⊥

]
1

,
[
Arn+i − ax

(0)
i b⊥

]
1

,
[
Bsj + by

(β)
j a⊥

]
2

,
[
Bsm+j + by

(0)
j a⊥

]
2

}
i∈[n],j∈[m]

.

152 Chapter 7. Functional Encryption for Quadratic Functions

It picks W̃, Ṽ←R GLk+2(p) and implicitly sets

W := W̃

(
B|b · a⊥ 0

0 1

)−1

and V := Ṽ

(
B|b · a⊥ 0

0 1

)−1

.

Here we use the fact that (B|ba⊥) is full rank with probability 1 − 1
Ω(p) over A, B ←R Dk,

a⊥ ←R orth(A), and b←R Zp (see Definition 9).
Then, for i ∈ [n], j ∈ [m], it computes

[ci]1 :=







γri

z · x(β)
i

x
(β)
i




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


W̃−1




1

and [ĉj]2 :=


W̃




sj

y
(β)
j

y
(β)
j







2

[cn+i]1 :=







γrn+i

−z · x(0)
i

0




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


 Ṽ−1




1

and [ĉm+j]2 :=


Ṽ




sm+j

y
(0)
j

0







2

.

B2 computes [c0]1 := [γ]1, [ĉ0]2 := [γ]2, gpk := PG, ct := {[c0]1, [ĉ0]2, [ci]1, [ĉj]2}i∈[2n],j∈[2m].
It returns (gpk, pk, ct) to A. Then, it simulates OKeygen as in G2 (see Figure 7.7). Finally,
when A outputs β′, B2 outputs 1 if β′ = β, and 0 otherwise.

It can be seen that when [z]1 is a real 3-PDDH challenge, i.e., [z]1 = [abc]1, then B2

simulates game G1; whereas it simulates game G2 when [z]1 ←R G1. In particular, while this
is easy to see for the elements of the public key and for ciphertexts [ĉj]2, [ĉm+j]2, for the
ciphertext elements [ci]1, [cn+i]1 we observe that they can be written as

ci :=




γB⊤Ari

z · x(β)
i · (b⊥)⊤a⊥

x
(β)
i




⊤(
B|b · a⊥ 0

0 1

)−1

W−1 =

(
γAri + zb−1 · x(β)

i b⊥

x
(β)
i

)⊤

W−1

cn+i :=




γB⊤Arn+i

−z · x(0)
i · (b⊥)⊤a⊥

0




⊤(
B|b · a⊥ 0

0 1

)−1

V−1 =

(
γArn+i + zb−1 · x(0)

i b⊥

0

)⊤

V−1.

So, if z = abc, then zb−1 = aγ and the ciphertexts are distributed as in G1; otherwise if z is
random zb−1 is identically distributed to (aγ+v) as in G2. This proves |AdvG1(A)−AdvG2(A)| ≤
Adv3-PDDH

PG,B2
(λ) + 2−Ω(λ).

Lemma 48: From game G2 to G3

|AdvG2(A)− AdvG3(A)| ≤ 2−Ω(λ).

Here, we change the distribution of the challenge ciphertexts, using a statistical argument.

Proof of Lemma 48. First, we use the fact that for all γ ∈ Zp:

(γ, v + γ)v←RZp ≡ (γ, v)v←RZp .

Therefore, we can write the challenge ciphertexts as follows. For all i∈ [n], j ∈ [m]:

ci :=

(
γAri + vx

(β)
i b⊥

x
(β)
i

)⊤

W−1, cn+i :=

(
γArn+i − vx

(0)
i b⊥

0

)⊤

V−1.

Then, we use the facts that:

7.2 Public-key FE 153

• (v ←R Zp) ≈ 1
p

(v ←R Zp) such that v + 1 6= 0 mod p.

• (A, B, a⊥)A,B←RDk,a⊥←Rorth(A) ≈ 1
Ω(p)

(A, B, a⊥)A,B←RDk,a⊥←Rorth(A)\Span(B), by Defini-

tion 9.

• For any v ∈ Zp such that v+1 6= 0 mod p, W←R GLk+2(p) is identically distributed than

W̃ ·
(

B|a⊥ 0
0 1

)
·




IDk×k 0 0
0 v

v+1
1

v+1

0 −1 1


 ·

(
B|a⊥ 0

0 1

)−1

, where W̃ ←R GLk+2(p),

A, B←R Dk, and a⊥ ←R orth(A) \ Span(B).

Therefore, we can change the distribution of {ci, ĉj}i∈[n],j∈[m] as follows:

ĉj = W̃ ·
(

B|a⊥ 0
0 1

)
·




IDk×k 0 0
0 v

v+1
1

v+1

0 −1 1







sj

y
(β)
j

y
(β)
j




= W̃ ·
(

B|a⊥ 0
0 1

)
·




sj

y
(β)
j

0




= W̃ ·
(

Bsj + y
(β)
j a⊥

0

)

and

ci =




γri

vx
(β)
i

x
(β)
i




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


 ·




IDk×k 0 0
0 v

v+1
1

v+1

0 −1 1




−1

·
(

B|a⊥ 0
0 1

)−1

· W̃−1

=




γri

v · x(β)
i

x
(β)
i




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ −1

v+1

0 (b⊥)⊤a⊥ v
v+1


 ·

(
B|a⊥ 0

0 1

)−1

· W̃−1

=




γri

(v + 1) · x(β)
i

0




⊤

·




A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


 ·

(
B|a⊥ 0

0 1

)−1

· W̃−1

=

(
γAri + (v + 1) · x(β)

i b⊥

0

)⊤

· W̃−1

Then, we use the facts that:

• v ←R Zp such that v + 1 6= 0 mod p ≈ 1
p

v ←R Zp such that v + 1 6= 0 mod p and

v 6= 0 mod p.

• For any v ∈ Zp such that v + 1 6= 0 mod p and v 6= 0 mod p, V ←R GLk+2(p) is

identically distributed than Ṽ ·
(

B|a⊥ 0
0 1

)
·




IDk×k 0 0
0 1 1

v

0 1 1 + 1
v


 ·

(
B|a⊥ 0

0 1

)−1

,

where Ṽ←R GLk+2(p), A, B←R Dk, and a⊥ ←R orth(A) \ Span(B).

154 Chapter 7. Functional Encryption for Quadratic Functions

Therefore, we can change the distribution of {cn+i, ĉm+j}i∈[n],j∈[m] as follows:

ĉm+j = Ṽ ·
(

B|a⊥ 0
0 1

)
·




IDk×k 0 0
0 1 1

v

0 1 1 + 1
v







sj

y
(0)
j

0




= Ṽ ·
(

B|a⊥ 0
0 1

)
·




sj

y
(0)
j

y
(0)
j




= Ṽ ·
(

Bsj + y
(0)
j a⊥

y
(0)
j

)

and

cn+i =




γrn+i

−vx
(0)
i

0




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


 ·




IDk×k 0 0
0 1 1

v

0 1 1 + 1
v




−1

·
(

B|a⊥ 0
0 1

)−1

· Ṽ−1

=




γrn+i

−vx
(0)
i

0




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ · (1 + 1

v) −1
v

0 −(b⊥)⊤a⊥ 1


 ·

(
B|a⊥ 0

0 1

)−1

· Ṽ−1

=




γrn+i

−(v + 1)x(0)
i

x
(0)
i




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


 ·

(
B|a⊥ 0

0 1

)−1

· Ṽ−1

=

(
γArn+i − (v + 1)x(0)

i b⊥

x
(0)
i

)⊤

· Ṽ−1

Finally, we use the fact that for any γ ∈ Zp: (v+1) where v ←R Zp such that v+1 6= 0 mod p
and v 6= 0 mod p ≈ 2

p
(v + γ), where v ←R Zp. Thus, we obtain, for all i ∈ [n] and j ∈ [m]:

ci :=

(
γAri + (v + γ)x(β)

i b⊥

0

)⊤

W̃−1, cn+i :=

(
γArn+i − (v + γ)x(0)

i b⊥

x
(0)
i

)⊤

Ṽ−1,

ĉj := W̃

(
γBsj + y

(β)
j a⊥

0

)
, ĉm+j := Ṽ

(
γBsj + y

(0)
j a⊥

y
(0)
j

)
, as in game G3.

This proves |AdvG2(A)− AdvG3(A)| ≤ 2−Ω(λ).

Lemma 49: From game G3 to game G4

There exists an adversary B3 such that:

|AdvG3(A)− AdvG4(A)| ≤ 2 · Adv3-PDDH
PG,B2

(λ) + 2−Ω(λ).

Here, we change the distribution of the challenge ciphertext, using the 3-PDDH assumption,
as for Lemma 47.

Proof of Lemma 49. Upon receiving a 3-PDDH challenge (PG, [a]1, [b]2, [c]1, [c]2, [z]1) (see Def-
inition 15), and the challenge messages (x(0), y(0)), (x(1), y(1)), B1 samples A, B ←R Dk;

7.2 Public-key FE 155

b ←R {0, 1}; a⊥ ←R orth(A), b⊥ ←R orth(B), and sets [γ]1 := [c]1 and [γ]2 := [c]2. Then,
for i ∈ [2n], j ∈ [2m], B2 picks ri ←R Zk

p, sj ←R Zk
p and computes

pk :=
{[

Ari + ax
(β)
i b⊥

]
1

,
[
Arn+i − ax

(0)
i b⊥

]
1

,
[
Bsj + by

(β)
j a⊥

]
2

,
[
Bsm+j + by

(0)
j a⊥

]
2

}
i∈[n],j∈[m]

.

It picks W̃, Ṽ←R GLk+2(p) and implicitly sets

W := W̃

(
B|b · a⊥ 0

0 1

)−1

and V := Ṽ

(
B|b · a⊥ 0

0 1

)−1

.

Here we use the fact that (B|ba⊥) is full rank with probability 1 − 1
Ω(p) over A, B ←R Dk,

a⊥ ←R orth(A), and b←R Zp (see Definition 9).
Then, for i ∈ [n], j ∈ [m], it computes

[ci]1 :=







γri

z · x(β)
i

x
(β)
i




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


W̃−1




1

and [ĉj]2 :=


W̃




sj

y
(β)
j

y
(β)
j







2

[cn+i]1 :=







γrn+i

−z · x(0)
i

0




⊤


A⊤B 0 0
0 (b⊥)⊤a⊥ 0
0 0 1


 Ṽ−1




1

and [ĉm+j]2 :=


Ṽ




sm+j

y
(0)
j

0







2

.

B2 computes [c0]1 := [γ]1, [ĉ0]2 := [γ]2, gpk := PG, and ct := {[c0]1, [ĉ0]2, [ci]1, [ĉj]2}i∈[2n],j∈[2m].
It returns (gpk, pk, ct) to A.

Then, it simulates OKeygen as in G4 (see Figure 7.7). Finally, if A outputs β′, B2 outputs
1 if β′ = β, and 0 otherwise.

It can be seen that when [z]1 is a real 3-PDDH challenge, i.e., [z]1 = [abc]1, then B3

simulates game G4; whereas it simulates game G3 when [z]1 ←R G1. In particular, while this
is easy to see for the elements of the public key and for ciphertexts [ĉj]2, [ĉm+j]2, for the
ciphertext elements [ci]1, [cn+i]1 we observe that they can be written as

ci :=




γB⊤Ari

z · x(β)
i · (b⊥)⊤a⊥

x
(β)
i




⊤(
B|b · a⊥ 0

0 1

)−1

W−1 =

(
γAri + zb−1 · x(β)

i b⊥

x
(β)
i

)⊤

W−1

cn+i :=




γB⊤Arn+i

−z · x(0)
i · (b⊥)⊤a⊥

0




⊤(
B|b · a⊥ 0

0 1

)−1

V−1 =

(
γArn+i + zb−1 · x(0)

i b⊥

0

)⊤

V−1.

So, if z = abc, then zb−1 = aγ and the ciphertexts are distributed as in G4; otherwise, if
z is random, zb−1 is identically distributed to (aγ + v) as in G3. This proves |AdvG3(A) −
AdvG4(A)| ≤ Adv3-PDDH

PG,B3
(λ) + 2−Ω(λ).

Lemma 50: From game G4 to game G5

There exists an adversary B4 such that

|AdvG4(A)− AdvG5(A)| ≤ 2 · Advone-SEl-IND
FEone,B4

(λ).

156 Chapter 7. Functional Encryption for Quadratic Functions

Proof of Lemma 50. This transition is symmetric to that between G0 and G1: we use the
selective, single-ciphertext security of the underlying private-key scheme (in Figure 7.2), to
switch: {[Ari + x

(β)
i b⊥]1, [Arn+i − x

(0)
i b⊥]1, [Bsj + y

(β)
j a⊥]2, [Bsm+j + y

(0)
j a⊥]2}i∈[n],j∈[m] to

{[Ari]1, [Bsj]2}i∈[2n],j∈[2m], since x
(β)⊤
i αy

(β)
j −x

(0)⊤
i αy

(0)
j = 0, by definition of the security game.

Thus, by Theorem 19 (one-SEL-IND security of FEone), we obtain the lemma.

Lemma 51: Game G5:

AdvG5(A) = 0.

Proof. This follows directly from inspection of game G5 in Figure 7.7, which does not depend
on the bit β ←R {0, 1}.

Chapter 8

Conclusion

Summary of the Contributions

In this thesis, we presented a new public-key encryption that satisfies a strong security no-
tion, which prevents many users to collude and perform complex, large-scale attacks. Our
construction, which appeared in [GHKW16], was the first CCA-secure encryption scheme with
a tight security reduction from the DDH assumption, without using pairings. It also has short
ciphertexts (they only contain three group elements). Figure 1.1 gives the state of the art for
tightly CCA-secure encryption.

Our proof techniques depart from the long line of prior works [HJ12, LJYP14, LPJY15] that
uses non-interactive zero-knowledge proofs with tight simulation soundness, for which we have
no efficient construction from standard assumptions without pairings. Other works [HKS15,
AHY15a, GCD+16] first build a tightly-secure IBE to then obtain CCA-secure encryption.
However, IBE is notoriously hard to build without pairings in the standard model [BPR+08],
let alone with a tight security proof and short ciphertexts. To get rid of the pairings, we revisit
techniques from [CW13] together with the hash-proof system approach used in [CS98].

We address the major limitation of our construction in [GHK17], where the size of the
public key is reduced to a constant number of group elements, using techniques from [Hof17].
We chose to only present the predecessor [GHKW16] here.

We also presented new functional encryption schemes from standard assumptions. We
followed a bottom-up approach, where we explored new constructions for larger classes of
functions, with new features, starting from simple constructions, that rely on well-understood
assumptions. Namely, we extended the original functional encryption schemes for inner prod-
ucts from [ABDP15, ALS16] to a multi-input setting:

• in Chapter 4, we present a multi-input functional encryption scheme (MIFE) for inner
products based on the MDDH assumption in prime-order bilinear groups. Our construc-
tion works for any polynomial number of encryption slots and achieves adaptive security
against unbounded collusion, while relying on standard polynomial hardness assump-
tions. Prior to this work, which was published in [AGRW17], we did not even have a
candidate for 3-slot MIFE for inner products in the generic bilinear group model. Our
work is also the first MIFE scheme for a non-trivial functionality based on standard
cryptographic assumptions, as well as the first to achieve polynomial security loss for
a super-constant number of slots under falsifiable assumptions. Prior works required
stronger non-standard assumptions such as indistinguishability obfuscation or multilin-
ear maps. The construction presented in Chapter 4 improves upon [AGRW17] in that
security handles corruption of input slots, with no additional efficiency cost or extra
assumption.

• in Chapter 5, we present constructions of multi-input functional encryption (MIFE)

157

158 Chapter 8. Conclusion

schemes for the inner-product functionality that improve those from Chapter 4 in two
main directions.

First, we put forward a novel methodology to convert single-input functional encryption
for inner products into multi-input schemes for the same functionality. Our transforma-
tion is surprisingly simple, general and efficient. In particular, it does not require pairings
and it can be instantiated with all known single-input schemes. This leads to two main
advances. First, we enlarge the set of assumptions this primitive can be based on, no-
tably, obtaining new MIFEs for inner products from plain DDH, LWE, and Decisional
Composite Residuosity. Second, we obtain the first MIFE schemes from standard as-
sumptions where decryption works efficiently even for messages of super-polynomial size.
This work appeared in [ACF+18]. As for the pairing-based MIFE presented in Chapter 4,
the novelty of the work presented in Chapter 5 of this thesis is that its security handles
corruptions of input slots.

Then, we turned our attention to multi-client functional encryption for inner products,
which enhances multi-input functional encryption in the following way. In MCFE, the encryp-
tion algorithm takes as an additional input a label (typically a time-stamp), and ciphertexts
from different input slots can only be combined when they are encrypted under the same label.
This limits the leakage of information from the encrypted messages. Multi-input functional
encryption corresponds to the case where every message is encrypted under the same label.

In Chapter 6, we give the first MCFE for inner products from standard assumptions,
namely, bilinear groups. We first give a simple construction whose security is based on the De-
cisional Diffie Hellman assumption in the random oracle model, which only satisfies a somewhat
weak security model. This construction appeared in [CDG+18a].

Then, we give several transformations to strengthen security, using a new primitive that we
called Secret Sharing Encapsulation; and an extra layer of single-input functional encryption on
top of the original scheme. The resulting scheme is fully secure, and relies on bilinear groups,
in the random oracle model. We also show a generic way to decentralize the generation of the
functional decryption keys, and the setup of the scheme. These can be performed independently
by all users, without interaction. We obtain a multi-client functional encryption where there is
no need for trusted authority holding any master secret key. These transformations appeared
in [CDG+18b].

Finally, in Chapter 7, we give the first functional encryption that supports the evaluation
of degree-2 polynomials on encrypted data, from standard assumptions. This work appeared
in [BCFG17]. The ciphertexts are succinct: their size only depends linearly on the encrypted
message, and not the functions for which functional decryption keys are generated. This is as
far as it goes in terms of functional encryption beyond predicate encryption, for constant de-
gree polynomials, from standard assumptions. Recall that in [LT17], it is shown that succinct
functional encryption which supports the evaluation of degree-3 polynomials on encrypted data
already implies indistinguishability obfuscation (together with the existence of block-wise 3-
local PRG), a powerful tool that has surprisingly many applications in cryptography, including
solving long standing open problems (see [SW14]). Unfortunately, there is no known construc-
tion of such functional encryption (with unbounded collusion) from standard assumptions.

Open Problems

Tight security. Can we exhibit tight security reduction for more advanced encryption
schemes, such as attribute-based encryption, or functional encryption? Even though tightly
secure identity-based encryption are known [CW13, HKS15, AHY15a, GCD+16], all of these
schemes have a large public key (it contains Ω(λ) group elements, where λ denotes the security
parameter), or rely on composite-order pairings [CGW17], which are less efficient than their
prime-order counterpart. Current techniques, such as adaptive partitioning from [Hof17], have

8.2 Open Problems 159

thus far been unsuccessful at providing a tightly-secure IBE with compact ciphertexts and
public key, in the prime-order setting.

More generally, we believe bridging the gap between currently known attacks against cryp-
tographic schemes and their security proof is a fruitful research agenda. Finding tighter se-
curity reductions is one way to bridge that gap, by ruling out more attacks than traditional,
asymptotic security reductions. Another approach consists of finding explicit attacks against
particular cryptosystems that match as much as possible the security proof. As far as we know,
there are no known attacks against concrete public-key encryption schemes which make use of
the fact that the security reduction is not tight. This deserves to be investigated.

Functional encryption. Interesting open problems include building functional encryption
that supports the evaluation of degree-2 polynomials on encrypted data with large messages.
Current constructions [BCFG17, DGP18] crucially rely on the use of pairings, which only allows
decryption to recover the value in the exponent of a group element. Since correctness involves
solving a discrete logarithm in this group, we require the size of the message to be bounded
by a polynomial in the security parameter (note that discrete logarithm should be hard to
compute for large values, for the security of the scheme). Because they would probably require
radically new techniques, and most likely avoid the use of pairings, such functional encryption
with large messages would be much insightful.

Besides, exploring larger classes of functions from standard assumptions, in particular get-
ting degree-3 succinct functional encryption from standard assumptions (and thereby, indis-
tinguishability obfuscation, given the result of [LT17]) would be a breakthrough.

On the more practical side, mitigating the reliance on trusted third party (which holds
a master secret key) would increase the practical relevance of functional encryption. Decen-
tralized multi-client functional encryption goes into that direction. We hope this work will
inspire further research following the same approach for other classes of functions, or predicate
encryption.

160 Chapter 8. Conclusion

Acknowledgments

Foremost, I wish to thank my advisor Hoeteck Wee. He influenced my work greatly, and his
care and dedication went far beyond what I could have expected. You like to quote: "There
are no two words [...] more harmful than good job"; I want to say there are no two words
more appropriate than thank you. I thank Michel Abdalla, for his perspicacious advice, and
his precious support, especially when I needed it. David Pointcheval, for running the lab in a
seemingly effortless way. The legend has it that David has a twin brother that helps him do
all the work. But that is myth, since that much work would require at least triplets.

Je remercie chaleureusement Benoît Libert d’avoir pris le soin de relire mon manuscript de
thèse en détail, et d’avoir fourni de multiples conseils qui ont nettement contribué à améliorer
la qualité de cette thèse. I thank Katsuyuki Takashima for accepting to review my PhD thesis.
It’s an honor to have you come all the way from Japan to attend my defense.

I thank Sophie Laplante and Iordanis Kerenidis for a valuable guidance and an insightful
first exposure to doing research in cryptography.

I thank Eike Kiltz for hosting me in Bochum before my PhD, and for introducing me to
an algebraic viewpoint in cryptography that hasn’t left me since then. I thank Carla Ràfols,
for teaching me all the intricacies of the Groth-Sahai proofs, and more. I only regret your
French is so good I’m not even incited to practice my Spanish with you. I thank Sakib Kakvi
for his random anecdotes, and my office mate Bertram Poettering, for impromptu nespresso
tasting. Jiaxin Pan for making my stay sportive, Daniel Masny for making me discover light
and delicate German meals, such as Schweinshaxe. I thank Olivier Blazy, Manuel Fersch,
Federico Giacon, Stefan Guido Hoffmann, Gottfried Herold, Felix Heuer, Elena Kirshanova,
Alexander May, Ilya Ozerov, Frank Quedenfeld, Marion Reinhardt-Kalender, Sven Schäge.

I thank Lucas Trevisan for hosting me at UC Berkeley, and showing me around the cam-
pus. I thank Tal Rabin for organizing the amazing cryptography workshop at the Simon’s
Institute, and my office mates Marshall Ball, Sasha Berkoff, Tobias Boelter, Paul Kirchner,
Mukul Kulkarni, Tianren Liu, Manuel Sabin. I thank Tancrède Lepoint for touristic visits
and somehow convincing me to wake up at 7AM to go to the gym (those who know me can
appreciate how unlikely this was).

Je tiens à remercier mes collègues de l’ENS: Balthazar Bauer, compétiteur talentueux au
championnat d’étourderie, Sonia Belaïd, Fabrice Benhamouda, Raphaël Bost, Florian Bourse
et Geoffroy Couteau aka les bolosses, pour nos aventures hollandaises et allemandes (is this
acknowledgement too big for you?), Céline Chevalier, Jérémy Chotard, Simon Cogliani, Mario
Cornejo, Angelo De Caro, Léo Colisson, Rafaël Del Pino qui a peut être finalement trouvé
la route du Groenland?, Itai Dinur, Léo Ducas, Edouard Dufour Sans, l’expert des big data
dans tout le sud ouest: gmerci, Aurélien Dupin, pour m’avoir fait connaître tous les décathlons
d’île de France, et la fameuse pizzeria d’Igny, Pierre-Alain Dupont, Ehsan Ebrahimi, Pooya
Farshim, Houda Ferradi, Georg Fuchsbauer que j’ai apprécié avoir comme co-auteur, Rémi
Géraud, Junqing Gong, Dahmun Goudarzi pour ses poses sexy sur les parterres de fleur en
terres australes, Giuseppe Guagliardo, Chloé Hébant, compétitrice talentueuse au championnat
de (l’absence de) tact, Duong Hieu Phan, Quoc Huy Vu, Louiza Khati, Baptiste Louf, Vadim
Lyubashevsky for teaching an inspiring crypto class, Pierrick Méaux, confident des pauses café,
et prof de tact à ses heures perdues, pour son impact aquatique sur le labo, Thierry Mefenza,

161

162

Brice Minaud, Michele Minelli à qui je dois envoyer la recette des pâtes aux micro-ondes, Nicky
Mouha, David Naccache, Anca Nitulescu, pour égayer le labo de son style coloré, Michele Orrù,
Alain Passelègue, pour d’intéressantes conversations, notamment quand il s’agissait de basher
les États-Unis, Thomas Peters, Duong-Hieu Phan, Antoine Plouviez, Thomas Prest, Razvan
Rosie, Mélissa Rossi, compagne de voyage en Australie, Sylvain Ruhault, Théo Ryffel, Olivier
Sanders, Antonia Schmidt-Lademann, Azam Soleimanian, Adrian Thillard, Bogdan Ursu, parti
en Allemagne, mais toujours un peu là, je suis ravi de notre collaboration, Damien Vergnaud. Je
remercie aussi Camilla et Ilaria, visiteuses régulières pour les pasta party. I also thank visitors
Luke Kowalczyk, who taught me the importance of the quality of the ice used in cocktails,
the emphatic Tal Malkin, for great conversations, Claudio Orlandi, friendly co-author, for a
nice collaboration. Je remercie également le personnel administratif de l’ENS et les membres
du SPI: Jacques Beigbeder, Lise-Marie Bivard, Isabelle Delais, Nathalie Gaudechoux, Joëlle
Isnard, Valérie Mongiat, Ludovic Ricardou, and Sophie Jaudon.

Je remercie chaleureusement Pierre-Alain Fouque d’avoir accepté de faire partie de mon
jury de thèse, et Adeline Langlois de m’avoir invité pour un séminaire à Rennes.

I thank Dennis Hofheinz for inviting me to visit at KIT, whose humility and kindness only
equal his brightness and love for research. Special thanks to Julia Hesse and Lisa Kohl for
giving me a warm welcome in Karlsruhe. I have been lucky to meet Thomas Agrikola, Brandon
Broadnax, Rafael Dowsley, Dingding Jia, Alexander Koch, Jessica Koch, Carmen Manietta,
Jörn Müller-Quade, Matthias Nagel, Jiaxin Pan, Andy Rupp, Mario Strefler, Bogdan Ursu,
Akin Ünal, Cong Zhang. Je remercie Gilles Barthe de m’avoir invité au IMDEA Software
Institute et pour notre collaboration enrichissante. I also thank Dario Fiore, for being a
great co-author, and for accepting to be part of the jury for my PhD defense. I’m glad I met:
Matteo Campanelli, Antonio Faonio, Artem Khyzha, Bogdan Kulynych, Vincent Laporte, Yuri
Meshman, Luca Nizzardo, Nataliia Stulova. Especialmente muchas gracias a Miguel Ambrona,
con quien me ha gustado trabajar y visitar a Madrid. Mola mucho!

I thank Rachel Lin for inviting me to visit UCSB, who impressed me by her research and
by how friendly she was. I am also grateful to have her as a member of the jury for my PhD
defense. Together with Stefano Tessaro, they made my stay very pleasant and insightful. I am
fortunate for my interactions with Priyanka Bose, Binyi Chen, Sandro Coretti, Yevgeniy Dodis,
Pooya Farshim, Joseph Jaeger, Harish Karthikeyan, Christian Matt, Pratik Soni, Ben Terner.
Je remercie particulièrement Fabrice Benhamouda que j’ai eu du (Buddah’s) bowl d’avoir
comme coloc. I’m especially thankful to Aishwarya Thiruvengadam, for good conversations,
and great kayaking skills (although the combination of the two can be perilous).

I thank Sanjam Garg for hosting me at UC Berkeley, making this an enjoyable and fruitful
stay for me. I’m very excited and grateful to start a postdoc with you. I thank Daniel Apon,
Prashant Vasudevan, Mohammad Hajiabadi, for being an amazing co-author, Daniel Masny,
for welcoming me at Berkeley, Xiao Liang, for teaching me French (summer boy for always),
and Sruthi Sekar, for linear algebra talks. Our friendship has reached the top since then.

Je remercie Damien Stehlé de m’avoir invité à Lyon, où j’ai eu la chance de rencontrer Jun-
qing Gong, Gottfried Herold, Elena Kirshanova, Fabien Laguillaumie, Benoît Libert, Fabrice
Mouhartem, Alice Pellet–Mary, Miruna Rosca, Weiqiang Wen.

Lors de mon premier stage de recherche, j’ai eu la chance d’être encadré par Brahim Chaib-
draa de l’université de Laval, au Québec. Dans cette contrée au dialecte comique, j’ai eu le
plaisir de rencontrer Sophie Létourneau, Josiane Ménard, Alejandro Sanchez. Muchas gracias
tambien a Oriol Serra, que me ha recibido por una visita a la UPC, m’ha agradat molt treballar
amb tu! Ahi he encontrado tambien Florent Foucaud y Guillem Perarnau.

Remerciement tribal à Julie Gauthier et Léo Girardin, des colocs high en couleurs, David,
Ogg, Bathilde, Zoé et Boris, pour nos soirées Futgeuze, Varrax, parti trop tôt en terre bretonne,
et Sarah.

Bien sur je remercie vivement les nadines: Président, Présidente, pour m’avoir hébergé à
l’hotel Halfon pendant ma période de nomadisme, ainsi que Juan Isaak Carlos miniprez, pour

163

nous avoir fait apprécier le suspens des prénoms; Malefoy Alimasse, fondateur du mouvement
Nadine unifié, Joris générateur de citations Kamelot, ou plus généralement d’entropie, Guil-
laume Davy générateur de conversations sur la sécurité de Whatsapp, Samickey générateur de
conversation sur le communadinisme, et en général je remercie les Jazirez, pour être plus aptes
à garder mes clés que je ne le suis moi même, Seya générateur de gifs, Skippy, Doc, Japan boy,
Mlle Razakarison. Je remercie mes collègues du MeuPRI, en particulier Laurent Feuilloley et
Nathan Grosshans.

Je remercie Fabrice Lembrez, mon prof de spé math, qui par sa pédagogie, a renforcé
mon goût pour les mathématiques. Je tiens à remercier mes amis PC1, tous divins: Dounia
Arcens, Pierre-Louis Alzieu, Anne Bernhart, Sylvain Borie, Farinelli Boyeldieu, Antoine Buges,
Maxime Collodel (Mr adiabatique), Blandine Darfeuil, Florent Delval, Juliette Deu, Alexandre
Plazanet, Milena Suarez, Marine Uribesalgo, Agnès Verdier.

Je remercie Jean-Baptiste, pour une amitié qui dure depuis le lycée jusqu’à ces jours, où
je squatte son/mon/notre canapé, et pour m’avoir fait découvrir des musiques à la valeur
artistique parfois (très) insoupconnée.

Je remercie Marta d’avoir passé de belles et nombreuses années à mes côtés. Je remercie
mes parents et ma soeur pour leur soutien indéfectible, leur support inconditionnel, aussi, les
toasts au magret. Merci!

164

Personal Publications

[ABGW17] M. Ambrona, G. Barthe, R. Gay, and H. Wee. Attribute-based encryption in the
generic group model: Automated proofs and new constructions. In ACM CCS 17,
pages 647–664. ACM Press, October / November 2017.

[ACF+18] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input func-
tional encryption for inner products: Function-hiding realizations and construc-
tions without pairings. In CRYPTO 2018, Part I, LNCS 10991, pages 597–627.
Springer, Heidelberg, August 2018.

[AGRW17] M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product func-
tional encryption from pairings. In EUROCRYPT 2017, Part I, LNCS 10210,
pages 601–626. Springer, Heidelberg, April / May 2017.

[BCFG17] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional en-
cryption for quadratic functions with applications to predicate encryption. In
CRYPTO 2017, Part I, LNCS 10401, pages 67–98. Springer, Heidelberg, August
2017.

[CDG+18] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentral-
ized multi-client functional encryption for inner product. In ASIACRYPT 2018,
Part II, LNCS 11273, pages 703–732. Springer, Heidelberg, December 2018.

[CGW15] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups
via predicate encodings. In EUROCRYPT 2015, Part II, LNCS 9057, pages 595–
624. Springer, Heidelberg, April 2015.

[FG18] G. Fuchsbauer and R. Gay. Weakly secure equivalence-class signatures from stan-
dard assumptions. In PKC 2018, Part II, LNCS 10770, pages 153–183. Springer,
Heidelberg, March 2018.

[FGKO17] G. Fuchsbauer, R. Gay, L. Kowalczyk, and C. Orlandi. Access control encryption
for equality, comparison, and more. In PKC 2017, Part II, LNCS 10175, pages
88–118. Springer, Heidelberg, March 2017.

[GHK17] R. Gay, D. Hofheinz, and L. Kohl. Kurosawa-desmedt meets tight security. In
CRYPTO 2017, Part III, LNCS 10403, pages 133–160. Springer, Heidelberg, Au-
gust 2017.

[GHKP18] R. Gay, D. Hofheinz, L. Kohl, and J. Pan. More efficient (almost) tightly secure
structure-preserving signatures. In EUROCRYPT 2018, Part II, LNCS 10821,
pages 230–258. Springer, Heidelberg, April / May 2018.

[GHKW16] R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption with-
out pairings. In EUROCRYPT 2016, Part I, LNCS 9665, pages 1–27. Springer,
Heidelberg, May 2016.

165

166

[GKW15] R. Gay, I. Kerenidis, and H. Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In CRYPTO 2015, Part II,
LNCS 9216, pages 485–502. Springer, Heidelberg, August 2015.

[GKW18] R. Gay, L. Kowalczyk, and H. Wee. Tight adaptively secure broadcast encryption
with short ciphertexts and keys. In SCN 18, LNCS 11035, pages 123–139. Springer,
Heidelberg, September 2018.

[GMW15] R. Gay, P. Méaux, and H. Wee. Predicate encryption for multi-dimensional range
queries from lattices. In PKC 2015, LNCS 9020, pages 752–776. Springer, Heidel-
berg, March / April 2015.

Bibliography

[ABDP15] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional en-
cryption schemes for inner products. In PKC 2015, LNCS 9020, pages 733–751.
Springer, Heidelberg, March / April 2015.

[ABDP16] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for
functional encryption for inner product evaluations. Cryptology ePrint Archive,
Report 2016/011, 2016. http://eprint.iacr.org/2016/011.

[ABGW17] M. Ambrona, G. Barthe, R. Gay, and H. Wee. Attribute-based encryption in the
generic group model: Automated proofs and new constructions. In ACM CCS 17,
pages 647–664. ACM Press, October / November 2017.

[ABP15] M. Abdalla, F. Benhamouda, and D. Pointcheval. Public-key encryption indis-
tinguishable under plaintext-checkable attacks. In PKC 2015, LNCS 9020, pages
332–352. Springer, Heidelberg, March / April 2015.

[ACD+12] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo.
Constant-size structure-preserving signatures: Generic constructions and simple
assumptions. In ASIACRYPT 2012, LNCS 7658, pages 4–24. Springer, Heidel-
berg, December 2012.

[ACF+18] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input func-
tional encryption for inner products: Function-hiding realizations and construc-
tions without pairings. In CRYPTO 2018, Part I, LNCS 10991, pages 597–627.
Springer, Heidelberg, August 2018.

[ADK+13] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Tagged one-time
signatures: Tight security and optimal tag size. In PKC 2013, LNCS 7778, pages
312–331. Springer, Heidelberg, February / March 2013.

[AGK08] M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A new framework for
hybrid encryption. Journal of Cryptology, 21(1):97–130, January 2008.

[Agr17] S. Agrawal. Stronger security for reusable garbled circuits, general definitions and
attacks. In CRYPTO 2017, Part I, LNCS 10401, pages 3–35. Springer, Heidelberg,
August 2017.

[AGRW17] M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product func-
tional encryption from pairings. In EUROCRYPT 2017, Part I, LNCS 10210,
pages 601–626. Springer, Heidelberg, April / May 2017.

[AGVW13] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. In CRYPTO 2013, Part II, LNCS 8043, pages
500–518. Springer, Heidelberg, August 2013.

167

http://eprint.iacr.org/2016/011

168

[AHN+17] M. Abe, D. Hofheinz, R. Nishimaki, M. Ohkubo, and J. Pan. Compact structure-
preserving signatures with almost tight security. In CRYPTO 2017, Part II, LNCS
10402, pages 548–580. Springer, Heidelberg, August 2017.

[AHY15a] N. Attrapadung, G. Hanaoka, and S. Yamada. A framework for identity-based
encryption with almost tight security. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 521–549. Springer,
2015.

[AHY15b] N. Attrapadung, G. Hanaoka, and S. Yamada. A framework for identity-based
encryption with almost tight security. In ASIACRYPT 2015, Part I, LNCS 9452,
pages 521–549. Springer, Heidelberg, November / December 2015.

[AJ15] P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional
encryption. In CRYPTO 2015, Part I, LNCS 9215, pages 308–326. Springer,
Heidelberg, August 2015.

[ALS16] S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner
products, from standard assumptions. In CRYPTO 2016, Part III, LNCS 9816,
pages 333–362. Springer, Heidelberg, August 2016.

[AS17] P. Ananth and A. Sahai. Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In EUROCRYPT 2017,
Part I, LNCS 10210, pages 152–181. Springer, Heidelberg, April / May 2017.

[BB04] D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
In CRYPTO 2004, LNCS 3152, pages 443–459. Springer, Heidelberg, August 2004.

[BBG05] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT 2005, LNCS 3494, pages 440–456.
Springer, Heidelberg, May 2005.

[BBM00] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In EUROCRYPT 2000, LNCS 1807,
pages 259–274. Springer, Heidelberg, May 2000.

[BCFG17] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional en-
cryption for quadratic functions with applications to predicate encryption. In
CRYPTO 2017, Part I, LNCS 10401, pages 67–98. Springer, Heidelberg, August
2017.

[BCHK07] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing, 36(5):1301–1328, 2007.

[BDJR97a] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer Society
Press, October 1997.

[BDJR97b] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Foundations of Computer Science, 1997. Proceedings.,
38th Annual Symposium on, pages 394–403. IEEE, 1997.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO 2001, LNCS 2139, pages 213–229. Springer, Heidelberg, August 2001.

[BF03] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. SIAM
journal on computing, 32(3):586–615, 2003.

169

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In EUROCRYPT 2014, LNCS
8441, pages 533–556. Springer, Heidelberg, May 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001,
LNCS 2139, pages 1–18. Springer, Heidelberg, August 2001.

[BGI+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im) possibility of obfuscating programs. Journal of the ACM
(JACM), 59(2):6, 2012.

[BGJS15] S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-input functional
encryption for unbounded arity functions. In ASIACRYPT 2015, Part I, LNCS
9452, pages 27–51. Springer, Heidelberg, November / December 2015.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In CRYPTO 2005, LNCS 3621, pages
258–275. Springer, Heidelberg, August 2005.

[BJK15] A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption.
In ASIACRYPT 2015, Part I, LNCS 9452, pages 470–491. Springer, Heidelberg,
November / December 2015.

[BJL16] F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur., 18(3):10:1–10:21,
2016.

[BKP14] O. Blazy, E. Kiltz, and J. Pan. (Hierarchical) identity-based encryption from affine
message authentication. In CRYPTO 2014, Part I, LNCS 8616, pages 408–425.
Springer, Heidelberg, August 2014.

[BKS16] Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption
in the private-key setting: Stronger security from weaker assumptions. In EU-
ROCRYPT 2016, Part II, LNCS 9666, pages 852–880. Springer, Heidelberg, May
2016.

[Ble98] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs# 1. In Annual International Cryptology Conference,
pages 1–12. Springer, 1998.

[BLR+15] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman.
Semantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In EUROCRYPT 2015, Part II, LNCS 9057, pages 563–594.
Springer, Heidelberg, April 2015.

[BNPW16] N. Bitansky, R. Nishimaki, A. Passelègue, and D. Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In TCC 2016-B, Part II,
LNCS 9986, pages 391–418. Springer, Heidelberg, October / November 2016.

[Boy99] V. Boyko. On the security properties of OAEP as an all-or-nothing transform. In
CRYPTO’99, LNCS 1666, pages 503–518. Springer, Heidelberg, August 1999.

[Boy08] X. Boyen. The uber-assumption family (invited talk). In PAIRING 2008, LNCS
5209, pages 39–56. Springer, Heidelberg, September 2008.

170

[BPR+08] D. Boneh, P. A. Papakonstantinou, C. Rackoff, Y. Vahlis, and B. Waters. On the
impossibility of basing identity based encryption on trapdoor permutations. In
49th FOCS, pages 283–292. IEEE Computer Society Press, October 2008.

[BR96] M. Bellare and P. Rogaway. The exact security of digital signatures-how to sign
with rsa and rabin. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 399–416. Springer, 1996.

[BSW06] D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In EUROCRYPT 2006, LNCS 4004, pages
573–592. Springer, Heidelberg, May / June 2006.

[BSW07] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-
cryption. In 2007 IEEE Symposium on Security and Privacy, pages 321–334.
IEEE Computer Society Press, May 2007.

[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and
challenges. In TCC 2011, LNCS 6597, pages 253–273. Springer, Heidelberg, March
2011.

[BV15] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In 56th FOCS, pages 171–190. IEEE Computer Society Press,
October 2015.

[BW06] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke
system. In ACM CCS 06, pages 211–220. ACM Press, October / November 2006.

[BW07] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC 2007, LNCS 4392, pages 535–554. Springer, Heidelberg, February
2007.

[CDG+18a] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentral-
ized multi-client functional encryption for inner product. In ASIACRYPT 2018,
Part II, LNCS 11273, pages 703–732. Springer, Heidelberg, December 2018.

[CDG+18b] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Multi-
client functional encryption with repetition for inner product. Cryptology ePrint
Archive, Report 2018/1021, 2018. https://eprint.iacr.org/2018/1021.

[CDH+00] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient
functions and all-or-nothing transforms. In EUROCRYPT 2000, LNCS 1807,
pages 453–469. Springer, Heidelberg, May 2000.

[CGW15] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups
via predicate encodings. In EUROCRYPT 2015, Part II, LNCS 9057, pages 595–
624. Springer, Heidelberg, April 2015.

[CGW17] J. Chen, J. Gong, and J. Weng. Tightly secure IBE under constant-size master
public key. In PKC 2017, Part I, LNCS 10174, pages 207–231. Springer, Heidel-
berg, March 2017.

[CLL+13] J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee. Shorter IBE and signatures
via asymmetric pairings. In PAIRING 2012, LNCS 7708, pages 122–140. Springer,
Heidelberg, May 2013.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues.
In IMA International Conference on Cryptography and Coding, pages 360–363.
Springer, 2001.

https://eprint.iacr.org/2018/1021

171

[CPP05] H. Chabanne, D. H. Phan, and D. Pointcheval. Public traceability in traitor
tracing schemes. In EUROCRYPT 2005, LNCS 3494, pages 542–558. Springer,
Heidelberg, May 2005.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO’98, LNCS 1462, pages
13–25. Springer, Heidelberg, August 1998.

[CS03] R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

[CSS12] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with
fault tolerance. In FC 2012, LNCS 7397, pages 200–214. Springer, Heidelberg,
February / March 2012.

[CW13] J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups.
In CRYPTO 2013, Part II, LNCS 8043, pages 435–460. Springer, Heidelberg,
August 2013.

[CW14] J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved
delegation for Boolean formula. In SCN 14, LNCS 8642, pages 277–297. Springer,
Heidelberg, September 2014.

[DDM16] P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner prod-
uct with full function privacy. In PKC 2016, Part I, LNCS 9614, pages 164–195.
Springer, Heidelberg, March 2016.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

[DDN03] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM review,
45(4):727–784, 2003.

[DGP18] E. Dufour Sans, R. Gay, and D. Pointcheval. Reading in the dark: Classifying
encrypted digits with functional encryption. Cryptology ePrint Archive, Report
2018/206, 2018. https://eprint.iacr.org/2018/206.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[DHO16] I. Damgård, H. Haagh, and C. Orlandi. Access control encryption: Enforcing
information flow with cryptography. In TCC 2016-B, Part II, LNCS 9986, pages
547–576. Springer, Heidelberg, October / November 2016.

[DOT18] P. Datta, T. Okamoto, and J. Tomida. Full-hiding (unbounded) multi-input in-
ner product functional encryption from the k-linear assumption. In PKC 2018,
Part II, LNCS 10770, pages 245–277. Springer, Heidelberg, March 2018.

[EHK+13] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework
for Diffie-Hellman assumptions. In CRYPTO 2013, Part II, LNCS 8043, pages
129–147. Springer, Heidelberg, August 2013.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

https://eprint.iacr.org/2018/206

172

[Emu17] K. Emura. Privacy-preserving aggregation of time-series data with public ver-
ifiability from simple assumptions. In Australasian Conference on Information
Security and Privacy, pages 193–213. Springer, 2017.

[FG18] G. Fuchsbauer and R. Gay. Weakly secure equivalence-class signatures from stan-
dard assumptions. In PKC 2018, Part II, LNCS 10770, pages 153–183. Springer,
Heidelberg, March 2018.

[FGKO17] G. Fuchsbauer, R. Gay, L. Kowalczyk, and C. Orlandi. Access control encryption
for equality, comparison, and more. In PKC 2017, Part II, LNCS 10175, pages
88–118. Springer, Heidelberg, March 2017.

[GCD+16] J. Gong, J. Chen, X. Dong, Z. Cao, and S. Tang. Extended nested dual system
groups, revisited. In PKC 2016, Part I, LNCS 9614, pages 133–163. Springer,
Heidelberg, March 2016.

[GGG+14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai,
E. Shi, and H.-S. Zhou. Multi-input functional encryption. In EUROCRYPT 2014,
LNCS 8441, pages 578–602. Springer, Heidelberg, May 2014.

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT 2013, LNCS 7881, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGH+16] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

[GGHZ16] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption with-
out obfuscation. In TCC 2016-A, Part II, LNCS 9563, pages 480–511. Springer,
Heidelberg, January 2016.

[GHK17] R. Gay, D. Hofheinz, and L. Kohl. Kurosawa-desmedt meets tight security. In
CRYPTO 2017, Part III, LNCS 10403, pages 133–160. Springer, Heidelberg, Au-
gust 2017.

[GHKP18] R. Gay, D. Hofheinz, L. Kohl, and J. Pan. More efficient (almost) tightly secure
structure-preserving signatures. In EUROCRYPT 2018, Part II, LNCS 10821,
pages 230–258. Springer, Heidelberg, April / May 2018.

[GHKW16] R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption with-
out pairings. In EUROCRYPT 2016, Part I, LNCS 9665, pages 1–27. Springer,
Heidelberg, May 2016.

[GKL+13] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou. Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774, 2013. http://eprint.

iacr.org/2013/774.

[GKP+13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In 45th ACM STOC,
pages 555–564. ACM Press, June 2013.

[GKSW10] S. Garg, A. Kumarasubramanian, A. Sahai, and B. Waters. Building efficient
fully collusion-resilient traitor tracing and revocation schemes. In ACM CCS 10,
pages 121–130. ACM Press, October 2010.

http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774

173

[GKW15] R. Gay, I. Kerenidis, and H. Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In CRYPTO 2015, Part II,
LNCS 9216, pages 485–502. Springer, Heidelberg, August 2015.

[GKW16] R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling func-
tionalities made generic and easy. In TCC 2016-B, Part II, LNCS 9986, pages
361–388. Springer, Heidelberg, October / November 2016.

[GKW18] R. Gay, L. Kowalczyk, and H. Wee. Tight adaptively secure broadcast encryption
with short ciphertexts and keys. In SCN 18, LNCS 11035, pages 123–139. Springer,
Heidelberg, September 2018.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and
system sciences, 28(2):270–299, 1984.

[GMW15] R. Gay, P. Méaux, and H. Wee. Predicate encryption for multi-dimensional range
queries from lattices. In PKC 2015, LNCS 9020, pages 752–776. Springer, Heidel-
berg, March / April 2015.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM CCS 06, pages 89–98. ACM
Press, October / November 2006. Available as Cryptology ePrint Archive Report
2006/309.

[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO 2012, LNCS 7417,
pages 162–179. Springer, Heidelberg, August 2012.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In 45th ACM STOC, pages 545–554. ACM Press, June 2013.

[GVW15a] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. Journal of the ACM (JACM), 62(6):45, 2015.

[GVW15b] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits
from LWE. In CRYPTO 2015, Part II, LNCS 9216, pages 503–523. Springer,
Heidelberg, August 2015.

[HJ12] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In
CRYPTO 2012, LNCS 7417, pages 590–607. Springer, Heidelberg, August 2012.

[HK07] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encap-
sulation. In CRYPTO 2007, LNCS 4622, pages 553–571. Springer, Heidelberg,
August 2007.

[HKS15] D. Hofheinz, J. Koch, and C. Striecks. Identity-based encryption with (almost)
tight security in the multi-instance, multi-ciphertext setting. In PKC 2015, LNCS
9020, pages 799–822. Springer, Heidelberg, March / April 2015.

[Hof17] D. Hofheinz. Adaptive partitioning. In EUROCRYPT 2017, Part III, LNCS
10212, pages 489–518. Springer, Heidelberg, April / May 2017.

[JL13] M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of
time-series data. In FC 2013, LNCS 7859, pages 111–125. Springer, Heidelberg,
April 2013.

174

[Jou00] A. Joux. A one round protocol for tripartite diffie–hellman. In International
algorithmic number theory symposium, pages 385–393. Springer, 2000.

[Jou04] A. Joux. A one round protocol for tripartite diffie–hellman. Journal of cryptology,
17(4):263–276, 2004.

[KD04] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In
CRYPTO 2004, LNCS 3152, pages 426–442. Springer, Heidelberg, August 2004.

[KDK11] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for
the smart-grid. In International Symposium on Privacy Enhancing Technologies
Symposium, pages 175–191. Springer, 2011.

[Kil06] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC 2006,
LNCS 3876, pages 581–600. Springer, Heidelberg, March 2006.

[KLM+18] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-
hiding inner product encryption is practical. In International Conference on Se-
curity and Cryptography for Networks, pages 544–562. Springer, 2018.

[KSW08] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT 2008, LNCS 4965,
pages 146–162. Springer, Heidelberg, April 2008.

[KSW13] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. Journal of Cryptology, 26(2):191–224,
April 2013.

[KY02] A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In EU-
ROCRYPT 2002, LNCS 2332, pages 450–465. Springer, Heidelberg, April / May
2002.

[LC12] Q. Li and G. Cao. Efficient and privacy-preserving data aggregation in mobile
sensing. In ICNP 2012, pages 1–10. IEEE Computer Society, 2012.

[LC13] Q. Li and G. Cao. Efficient privacy-preserving stream aggregation in mobile
sensing with low aggregation error. In PETS 2013, LNCS 7981, pages 60–81,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Lew12] A. B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In EUROCRYPT 2012, LNCS 7237, pages 318–335.
Springer, Heidelberg, April 2012.

[Lin16] H. Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In EUROCRYPT 2016, Part I, LNCS 9665, pages 28–57. Springer,
Heidelberg, May 2016.

[Lin17] H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 599–629. Springer, Hei-
delberg, August 2017.

[LJYP14] B. Libert, M. Joye, M. Yung, and T. Peters. Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In ASIACRYPT 2014,
Part II, LNCS 8874, pages 1–21. Springer, Heidelberg, December 2014.

[LL16] K. Lee and D. H. Lee. Two-input functional encryption for inner products
from bilinear maps. Cryptology ePrint Archive, Report 2016/432, 2016. http:

//eprint.iacr.org/2016/432.

http://eprint.iacr.org/2016/432
http://eprint.iacr.org/2016/432

175

[LL18] K. Lee and D. H. Lee. Two-input functional encryption for inner products from
bilinear maps. IEICE TRANSACTIONS on Fundamentals of Electronics, Com-
munications and Computer Sciences, 101(6):915–928, 2018.

[LPJY14] B. Libert, T. Peters, M. Joye, and M. Yung. Non-malleability from malleability:
Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In EUROCRYPT 2014, LNCS 8441, pages 514–532.
Springer, Heidelberg, May 2014.

[LPJY15] B. Libert, T. Peters, M. Joye, and M. Yung. Compactly hiding linear spans -
tightly secure constant-size simulation-sound QA-NIZK proofs and applications.
In ASIACRYPT 2015, Part I, LNCS 9452, pages 681–707. Springer, Heidelberg,
November / December 2015.

[LT17] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 630–660.
Springer, Heidelberg, August 2017.

[LV16] H. Lin and V. Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In 57th FOCS, pages 11–20.
IEEE Computer Society Press, October 2016.

[Mer78] R. C. Merkle. Secure communications over insecure channels. Communications
of the ACM, 21(4):294–299, 1978.

[MRV16] P. Morillo, C. Ràfols, and J. L. Villar. The kernel matrix Diffie-Hellman as-
sumption. In ASIACRYPT 2016, Part I, LNCS 10031, pages 729–758. Springer,
Heidelberg, December 2016.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[O’N10] A. O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[OP01] T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In CT-RSA 2001, LNCS 2020, pages 159–175. Springer,
Heidelberg, April 2001.

[OT08] T. Okamoto and K. Takashima. Homomorphic encryption and signatures from
vector decomposition. In PAIRING 2008, LNCS 5209, pages 57–74. Springer,
Heidelberg, September 2008.

[OT09] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-
products. In ASIACRYPT 2009, LNCS 5912, pages 214–231. Springer, Heidel-
berg, December 2009.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidelberg,
May 1999.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In 37th ACM STOC, pages 84–93. ACM Press, May 2005.

[Riv97] R. L. Rivest. All-or-nothing encryption and the package transform. In FSE’97,
LNCS 1267, pages 210–218. Springer, Heidelberg, January 1997.

176

[RS92] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In CRYPTO’91, LNCS 576, pages 433–444.
Springer, Heidelberg, August 1992.

[SCR+11] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving
aggregation of time-series data. In NDSS 2011. The Internet Society, February
2011.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO’84,
LNCS 196, pages 47–53. Springer, Heidelberg, August 1984.

[SS10] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS 10, pages 463–472. ACM Press, October 2010.

[SW05] A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EURO-
CRYPT 2005, LNCS 3494, pages 457–473. Springer, Heidelberg, May 2005.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

[Wat09] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In CRYPTO 2009, LNCS 5677, pages 619–636. Springer,
Heidelberg, August 2009.

[Wee14] H. Wee. Dual system encryption via predicate encodings. In TCC 2014, LNCS
8349, pages 616–637. Springer, Heidelberg, February 2014.

[Wee17] H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In
TCC 2017, Part I, LNCS 10677, pages 206–233. Springer, Heidelberg, November
2017.

ABSTRACT

Our work revisits public-key encryption in two ways: 1) we provide stronger security guarantee
that typical public-key encryption, which handles many users than can collude to perform
sophisticated attacks. This is necessary when considering widely deployed encryption schemes,
where many sessions are performed concurrently, as in the case on the Internet; 2) we consider
so-called functional encryption, introduced by Boneh, Sahai, Waters in 2011, that permits fine-
grained access to the encrypted data. It generalizes traditional public-key encryption is that a
master secret key is used to generate so-called functional decryption keys, each of which is
associated with a particular function. An encryption of a message m, together with a functional
decryption key associated with the function f, decrypts the value f(m), without revealing any
additional information about the encrypted message m.

MOTS CLÉS

Chiffrement à clé publique, sécurité accrue, chiffrement fonctionnel

RÉSUMÉ

Nos travaux revisitent le chiffrement a clé publique de deux façons : 1) nous donnons une
meilleure garantie de sécurité que les chiffrements à clé publique typiques, qui gère de nombreux
utilisateurs pouvant coopérer pour réaliser des attaques sophistiquées. Une telle sécurité est
nécessaire lorsque l'on considère des schémas de chiffrement largement déployés, où de
nombreuses sessions ont lieu de manière concurrentes, ce qui est le cas sur internet 2) nous
considérons le chiffrement fonctionnel, introduit en 2011 par Boneh, Sahai et Waters, qui permet
un accès fin aux données chiffrées. Il généralise le concept de chiffrement à clé publique
traditionnel : une clé secrète maîtresse permet de générer des clés de chiffrement fonctionnelles,
qui sont chacune associées à une fonction particulière. Le déchiffrement du chiffrement d'un
message m avec une clé de déchiffrement fonctionnelle associée à une fonction f obtiendra la
valeur f(m), et aucune autre information à propos du message chiffré m.

KEYWORDS

Public-key encryption, tight security, functional encryption

