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Abstract. We construct functional encryption (FE) schemes for the or-
thogonality (OFE) relation where each ciphertext encrypts some vector
x and each decryption key, associated to some vector y, allows to deter-
mine if x is orthogonal to y or not. Motivated by compelling applications,
we aim at schemes which are function hidding, i.e. y is not leaked.
Our main contribution are two such schemes, both rooted in existing
constructions of FE for inner products (IPFE), i.e., where decryption
keys reveal the inner product of x and y. The first construction builds
upon the very efficient IPFE by Kim et al. (SCN 2018) but just like the
original scheme its security holds in the generic group model (GGM).
The second scheme builds on recent developments in the construction
of efficient IPFE schemes in the standard model and extends the work
of Wee (TCC 2017) in leveraging these results for the construction of
FE for Boolean functions. Conceptually, both our constructions can be
seen as further evidence that shutting down leakage from inner product
values to only a single bit for the orthogonality relation can be done with
little overhead, not only in the GGM, but also in the standard model.
We discuss potential applications of our constructions to secure databases
and provide efficiency benchmarks. Our implementation shows that the
first scheme is extremely fast and ready to be deployed in practical ap-
plications.

1 Introduction

Consider the following scenario inspired from the literature on privacy preserving
cryptographic role-based access control. The file storage of an organization is
structured following a role-based access control, where users have associated
one or more roles and each file can be accessed by users with a certain role (or
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combination of roles). Storage of the files is outsourced to a cloud which needs to
serve files to users that request them. In particular, the cloud needs to determine,
for each request, if it complies with the access control structure. In this scenario
it is important to empower the cloud to perform such checks but, crucially, the
cloud should not have information regarding the roles that can access each file.
Indeed, access privileges may indicate which files are critical and may be linked,
semantically, with the content of the files (e.g. revealing which patient files can
be accessed by psychiatrists is clearly undesirable).

A similar scenario arises in the context of outsourcing file storage in a way
that enables keyword search. A solution is to reveal to the cloud, for each file
deterministic encryptions of the keywords which occur in that file. Even if the
actual kewords are hidden, this solution reveals co-occurrence information, i.e.
which files share keywords and how many keywords are shared. In turn this may
reveal sensitive information about the semantics of the encrypted keywords.

The two scenarios are conceptually quite close and, unsurprisingly, share a
similar solution. The information associated to a file f can be encoded as a binary
vector rf which encodes the subset of roles that can access a file. Similarly, to
each user u one can then associate a binary vector ru, which encodes the roles
associated to that user. User u has access to file f if ⟨ru, rf ⟩ ̸= 0.5 The challenge
is to encode ru and rf in a way that prevents unnecessary leaks. In particular,
given encodings of rf1 and rf2 the precise relation between the vectors (i.e. their
dot-product) should not be revealed. More interestingly, while the cloud should
learn that ⟨ru, rf ⟩ ̸= 0 it should not learn the precise value of ⟨ru, rf ⟩: this
reveals the number of roles associated to a user that allow accessing that file.

Technically, the above functionality can be achieved using functional encryp-
tion for the orthogonality relation (OFE). Here, each ciphertext encrypts a vector
x in Zn

q . Each secret key sky is also associated with a vector y in Zn
q defines a

function fy(x) that returns 1 iff ⟨x, y⟩ = 0, and returns 0 otherwise. We write
x⊥ y for the orthogonality predicate between vectors x and y.6

Despite the close relation between orthogonality and inner products, OFE is a
different primitive from Functional Encryption for Inner-Products(IPFE): in the
latter schemes a decryption key permits recovering the value of the inner-product
⟨x, y⟩. Intuitively, IPFE schemes should be easier to construct than OFE schemes,
since they leak much more information about the encrypted data. A cursory look
at the state of the art shows that this the case. For IPFE schemes, recent works
[2,3,4,5,6,1] propose surprisingly efficient constructions of IPFE schemes with
strong security guarantees and comparatively simple security proofs. More recent
extensions to these constructions also covered the function-hiding case where
decryption keys do not reveal information about the function to which they
are associated. The most efficient scheme to date offering this level of security is

5Here ⟨·, ·⟩ denotes the inner-product.
6In other works this type of OFE has been referred to predicate-hiding attribute-

hiding predicate-only predicate encryption, but we prefer the view that we are dealing
with a particular case of functional encryption rather than a particular case of attribute-
based or predicate encryption.
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based on a modular construction proposed by Lin [15] that converts two instances
of a non-function hiding IPFE into a function hiding IPFE in an elegant way.

In contrast, most of the existing OFE schemes are instantiated in (three-
factors) composite-order bilinear groups [10,12] or dual paring vector space on
prime-order bilinear groups [17,18]. All of these schemes share an uncomfortably
high level of conceptual complexity which explains perhaps the slow progress in
this area. Indeed, till the recent work by Wee [22] there had been little progress on
the design of (non function-hiding) OFE schemes. Wee shows that it is possible
to port the rationale underlying the family of constructions of IPFE initiated by
Abdalla et al. [1] to build more efficient OFE schemes from standard assumptions
and using simpler proof techniques. The main result of this line of work is a family
of simple OFE schemes in prime-order bilinear groups under the matrix-DDH
(MDDH) assumption, using an insightful randomization technique to reduce
inner-product leakage (in the exponents) to the orthogonality leakage allowed
by OFE.

In this paper we extend this line of works, by considering the following two
main questions in the context of OFE schemes that are function hiding:

Question 1 Can the relation between OFE and IPFE hinted at by Wee’s con-
struction be generalized to obtain black-box constructions of OFE from
IPFE simply by “shutting down” the excessive leakage?

Question 2 Can one combine the new techniques by Lin [15] and Wee [22] in
the construction of OFE, giving rise to new families of schemes and proof
techniques?

1.1 Our Contributions

Simple Constructions: Good and Bad. We start by looking at the relation be-
tween OFE and IPFE and give a negative result that excludes a simplistic ap-
proach to constructing a function hiding OFE from any IPFE. Specifically, we
look at black-box constructions that deterministically encodes the key y for the
orthogonality relation as a set of keys {y1, y1, . . . , yk} for the inner product com-
putation. We show that, even starting from a secure IPFE that also guarantees
function hiding (FH-IPFE, for short), it is impossible to construct in this way
a function hiding OFE even if security should only hold for a single ciphertext.
We then extend the results to the case where the transformation is randomized,
but multiple challenge queries are allowed. We stress that other black-box trans-
formations, e.g. some which combine multiple instances of an IPFE scheme, are
not ruled out by these results.

Next, we show that this negative result is tight: we provide a construction of
an OFE from a FH-IPFE via a randomized transformation which is secure but
only for the single-challenge case. While not all-encompassing, these negative
results suggest ways around them. On the positive side, we first show how to
overcome this negative result when working in the generic group model and
slightly deviating from the simplistic black-box construction above. We give
a highly efficient secure OFE in the generic group model (that also achieves
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function hiding) via a simple modification of the FH-IPFE scheme put forth by
Kim et al. [14]. After these warm up results we move on to construct a fully secure
OFE from standard assumptions. Our solution builds on results by Wee [22] and
Lin [15] and extends them to the setting of function hiding OFE. We start by
briefly discussing these two results separately.

Recent Developments in IPFE. In [22] Wee shows how a family of (public-key)
IPFE schemes can be constructed from the MDDH assumption. The schemes are
inspired by recent results in constructing IPFE in which the inner-product result
is recovered in the exponent. Wee’s crucial observation is that it is possible to
use randomization to preserve the orthogonality relation in the decrypted result,
while ensuring that no additional leakage exists under the DDH assumption. The
resulting schemes are elegant and have a relatively simple security proof when
compared to constructions relying on alternative techniques such as composite-
order bilinear groups and dual pairing vector spaces over prime-order bilinear
groups. The caveat is that these schemes are semi-adaptive secure (selective after
seeing the master public key)

Lin [15] gave a generic construction of (secret-key) FH-IPFE from (public-
key) IPFE schemes with a particular structure (similar in spirit to those explored
by Wee). The construction (roughly) uses two instances of the same scheme on
top of each other (the encryption algorithm of one scheme is used to protect
keys and the other scheme is used to encrypt messages) and then takes advan-
tage of the algebraic structure of such schemes to ensure the correctness of the
construction via a combination of key extraction and decryption. Again, the
security proof is simple and elegant. 7

Main construction. We show how to combine the two techniques by Wee and
Lin to give a modular construction of a new family of function-hiding OFE via
the following partial results, which add up to our main technical contribution.

First, we extend Lin’s generic construction from the IPFE to the OFE setting,
showing that the construction also works if one starts from two instances of a
OFE scheme to obtain a (weakly) function hiding OFE. We also observe that this
transformation has a downside: if starting from a semi-adaptively secure OFE,
one obtains a weakly secure OFE, where the adversary must be restricted to
selectively commit to both keys and indices. Interestingly, our transform differs
from Lin’s original one in two main points. First, it does not induce additional
levels of multi-linearity. Starting from two OFE in the bilinear group setting,
the transformation produces a (weak) function hiding OFE that also relies on
pairings. This is in sharp contrast with the basic IPFE setting [15] and similar
to the multi-input IPFE setting [3]. Second, to guarantee correctness, the two
underlying OFE need to be instantiated with different, but matching parameters.

7A (small) caveat of Lin’s transform is that it only achieves weak function hiding.
This is a relaxation of the FH notion that imposes some additional constraints on the
key derivation queries that the adversary is allowed to ask. This restriction is not too
severe as generic (yet efficient) transforms to fully fledged (strong) function hiding are
known [16].
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Scheme Ours (GGM) Ours (SM) [20] [13]
security full full∗ selective full
group order prime prime composite prime
assumption GGM MDDH, DDH C3DH, DLIN DLIN
key size n 6n+ 6 4n+ 4 6n

ciphertext size n 6n+ 6 4n+ 4 6n

key extraction n 12n+ 9 32n+ 4 6n

encryption n 12n+ 9 24n+ 16 6n

decryption n 6n+ 6 4n+ 4 6n

Table 1. Comparison of our generic group model (GGM) and standard model
(SM) constructions with prior constructions. Full security refers to unrestricted
indistinguishability-based function-hiding. For the case of our standard-model scheme,
we signal with ∗ the (controlled) impact of complexity leveraging in our proof of secu-
rity. Selective security refers to the setting where the attacker commits to the challenge
message ahead of time. Sizes are given in terms of group element counts and the costs
of key generation, extraction and encryption are expressed in group operation counts.
For our standard model scheme we take k = 2.

.
Thus, to concretely instantiate our transform we modify Wee’s OFE con-

struction in two ways: i. we make it compatible with our extension of Lin’s
construction and ii. we use complexity leveraging to get adaptive (rather than
semi-adaptive) security. As a result we get a new family of (function hiding) OFE
schemes based on the MDDH assumption with a simple and modular proof of se-
curity and whose practical efficiency compares favorable with existing solutions
(see table 1 for comparisons with previous work). We remark that our usage
of complexity leveraging does not degrade security too much (at least when re-
stricting, as we do in our applications, to small norm vectors). To see why this
is the case let us describe our techniques a bit more in detail.

Just Enough Complexity Leveraging In general, any selective (or semi-adaptive)
secure scheme can be turned into an adaptively secure one by essentially guessing
the challenges in advance. Complexity leveraging typically induces an exponen-
tial factor (in the length of the challenge) loss in the quality of the reduction,
often resulting in meaningless security guarantee for practical parameters. At
the same time if one applies complexity leveraging to small size challenges, the
security loss might become tolerable, thus making the technique relevant also
from a practical perspective. A naive application of complexity leveraging to the
scheme resulting from our transformation would lead to an unacceptably high
security loss. Indeed, as we are dealing with a symmetric and function-hiding
scheme, the reduction would need to guess in advance all the challenge messages
and secret key queries that the adversary is allowed to ask. Even when restrict-
ing to small norm vectors this results in a huge exponential loss that destroys
security completely. Our key observation is to “anticipate” complexity leverag-
ing to a stage where it can be made much less harmful. Concretely, we apply
the complexity leveraging step to the basic (semi-adaptive secure) OFE scheme.
This scheme is secure in the public-key setting and therefore only one challenge
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query needs to be guessed by the reduction.8 Moreover, we show that the next
steps in our construction (namely our Lin-style function-hiding transform) easily
extends to the adaptive setting without introducing exponential losses. Hence
the final loss essentially matches the possibilities for a single message vector,
which is tolerable for small norm vectors.
Applications and Implementation As a final result we put forward applications
of OFE in the area of access-control and conjunctive keyword search. We focus
on applications where our usage of complexity leveraging step does not reduce
security too much, which is the case for both applications because they depend
only on the ability to compute the subset relation. Indeed, when encoding the
subset relation over n keywords/roles we can show that our loss in reduction
tightness is only 22n and is independent of the size of the finite-field in which
the orthogonality relation is computed.

We implement both our scheme in the generic group model and our main
constructions and give benchmarking results for subset keyword search. The
generic group model construction is very fast and it can be used in practical
applications: all operations are in the range of 100 milliseconds for vectors of
size 256. Operations in our standard model construction are roughly 6 times
slower.
Organization After we establish notation and introduce preliminary definitions
in Section 2 we present our generic group model construction is presented in
Section 4 and our standard model construction in Section 5. Finally in Sections 6
and 7, respectively, we present our experiment results and discuss applications
of our schemes.

2 Preliminaries

We write y ← x for assigning a value to variable x and x←← X when sampling x
from the set X uniformly at random. For an integer n, we let [n] denote the set
{1, . . . , n}. If A is a probabilistic algorithm, we also write y ←← A(x1, . . . , xn) for
the action of running A on inputs x1, . . . , xn with random coins chosen uniformly
at random, and assigning the result to y. We use ppt for probabilistic polynomial-
time. All algorithms are ppt unless stated otherwise.

We use lowercase bold font for vectors x and uppercase bold font for matrices
A. |x| denotes vector length and x ∥ y is used for vector concatenation. We use
⟨x, y⟩ to denote the inner-product of two vectors. We write x⊥y for orthogonality
of two vectors, which takes the value 1 if ⟨x, y⟩ = 0, and 0 otherwise.

Throughout we let PG = (e,G1, G2, GT , q, g1, g2) denote a pairing group,
where G1, G2, GT are cyclic groups of prime order q, g1 and g2 are generators
of G1 and G2 respectively, and e : G1 × G2 → GT is an admissible bilinear
map. For a ∈ Zq and i = {1, 2, T} we write [a]i for encoding a using the group
operation [a]i = gai and extend this notation naturally for the component-wise

8Recall that in the public key setting, adaptive single message indistinguishability
implies adaptive many message indistinguishability via a standard hybrid argument
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encoding of vectors and matrices. We will assume that the following computa-
tional assumption holds in both G1 and G2.9

Definition 1 (Matrix Distribution). Let l, k ∈ N with l > k. We call Dl,k a
matrix distribution if it outputs (in polynomial time and with overwhelming
probability) matrices in Zl×k

q of full rank k. We define Dk = Dk+1,k.

Definition 2 (Dl,k-Matrix Diffie-Hellman Assumption [11]). Let Dl,k be a ma-
trix distribution. We say that the Dl,k-Matrix Diffie-Hellman Assumption (Dl,k-
MDDH) holds in G if, for all ppt adversaries D, this definition of advantage is
small

AdvDl,k,G(D) := Pr[D(G, [A], [As]) = 1]− Pr[D(G, [A], [c]) = 1] .

The probability space is that induced by the following sampling operations A←
← Dl,k, s←← Zk

q , and c←← Zl
q and the coin tosses of adversary D.

In this paper we consider the case l = k + 1 referred as Dk-MDDH assumption.
Note that, to simplify notation, we omit the security parameter in the previous
assumption and throughout the paper. Asymptotic definitions of security can
be recovered by considering a family of bilinear groups indexed by the security
parameter.

Functional Encryption We briefly overview relevant concepts from the area of
functional encryption, following the formalization introduced by Boneh, Sahai,
Waters [9] and O’Neill [19]. We start with the syntax of this primitive.

Syntax A functional encryption scheme FE for a family of functions FyX → Σ,
for y ∈ Y , is a tuple FE = (Setup,KeyGen,Enc,Dec) of ppt algorithms, where:

– Setup( ) is the setup algorithm, which outputs a master public key mpk and
a master secret key msk.

– KeyGen(msk, y), is the key extraction algorithm, which on input a master
secret key msk and key y ∈ Y outputs a secret key sky associated with Fy.

– Enc(mpk, x) is the encryption algorithm, which on input a public key mpk
and a message msk ∈ X outputs a ciphertext ct.

– Dec(mpk, ct, sky) is the deterministic decryption algorithm, which on input
a master publik key mpk, a ciphertext ct and a secret key sky outputs z ∈ Σ
or an abort symbol ⊥.

We note that when Σ = {0, 1} the syntax considered above matches predicate-
only encryption schemes [12].

Correctness. A scheme FE as above is correct if, for all (mpk,msk) in the range
of Setup( ), all x, y ∈ X, all sky in the range of KeyGen(msk, y) and all ct in the
range of Enc(mpk, x), we have that Dec(ct, sky) = F (x, y).

9This implies that our scheme requires an asymmetric Type-III pairing group.
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Experiment INDb
FE,A( ):

(mpk,msk)←← Setup( )

b′ ←← ALoRy(·,·),LoRx(·,·)(α)
Output b′

Fig. 1. Game defining indistiguishability-based security of a functional encryption
scheme. An admissible adversary will ensure that F

y
j
0
(xi0) = F

y
j
1
(xi1) for all i queries to

LoRx and all j queries to LoRy. Furthermore, we also impose that the attacker never
queries the all-zeroes to either the key extraction or the encryption oracle.

Indistinguishability-based security Consider the experiment defined in Figure 1,
parametrised by a functional encryption scheme FE , an attacker A and a secret
bit b. The LoRx oracle receives two messages (x0, x1) and returns a fresh encryp-
tion of xb and the LoRy oracle receives two keys (y0, y1) and returns a secret key
skb corresponding to a fresh extraction of yb.

Several variants of IND-based security can be defined based on this experi-
ment:

– Public-key security: the input to the attacker is α = mpk. In the secret key
setting, we have α = ϵ. We use SK to refer to the latter weaker setting.

– Semi-adaptive security: the attacker places all calls to LoRx before calling
LoRy. We use SAD to refer to the weaker setting where this restriction is
enforced.

– Non function-hiding (standard) security: the attacker is restricted to making
y0 = y1 in all calls to LoRy. We use FH to denote the stronger setting where
this restriction is not enforced.

– Weak function-hiding: the attacker is restricted by the stronger requirement
Fyj0

(xi0) = Fyj1
(xi0) = Fyj1

(xi1) for all i queries to LoRx and all j queries to
LoRy. We use wFH to distinguish this case from the full function-hiding case.

– Single-message security: the attacker places only one call to LoRx. We will
use one to indicate when we are in the weaker setting where this restriction
is enforced.

For all such variants, the advantage of an an attacker A against FE is defined
by the following difference of conditional probabilities, where xx will specify the
security variant according to the above conventions.

Advxx-IND
FE,A ( ) =

∣∣Pr[IND1
FE,A( )⇒ 1]− Pr[IND0

FE,A( )⇒ 1]
∣∣ .

Discussion As examples of the use of our notation for security definitions, the
strongest notion of security is function hiding public-key FE, denoted FH-IND,
which is actually impossible to achieve; the weakest notion is single-message,
semi-adaptive single-key security in the secret-key setting, denoted one-SAD-SK-IND.
Note that in the public key setting the single-message and multi-message are
equivalent via a standard hybrid argument (for all variants of security) whereas
in the symmetric key setting this is not the case since the attacker cannot obtain
arbitrary encryptions of chosen messages. Note also that, as mentioned above,
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Experiment RealFE,A( ):
(mpk,msk)←← Setup( )

b←← AKeyGen(msk,·),Enc(mpk,·)(α)
Output b

Experiment IdealFE,A,S( ):
(mpk,msk)←← Setup( )

b←← AS(key,Φ(·)),S(msg,Φ(·))(α)
Output b

Fig. 2. Games defining simulation-based security of an FE scheme. On the i-th (resp.
j-th) Enc query (resp. KeyGen query) the (stateful) simulator S receives as side informa-
tion leakage Φ: a matrix of values such that Φ[i, j] = Fyj (xi), for all (i, j) combinations
of all key extraction and encryption queries placed by A (including the current one).
Furthermore, we also impose that the attacker never queries the all zeroes vector to
either the key extraction or the encryption oracle.

function-hiding functional encryption cannot be satisfied in the public-key set-
ting: once an adversary is provided with a secret key sky for some y and public
encryption key mpk, it can learn Fy(x) for arbitrary x. Finally, note that in the
secret-key setting, semi-adaptive security is the same as selective security, where
the adversary needs to commit to the LoRx queries without any side information
about the global parameters. A further weakening of this notion is fully selective
security, where all queries are provided upfront and the adversary gets a set of
challenge ciphertexts and keys in batch to conduct its attack.

Simulation-based security Consider the experiments defined in Figure 2, which
are parametrised by functional encryption scheme FE , adversary A and simula-
tor S.
As before, the following variants of simulation-based security can be defined
based on this experiment:

– Public-key security: the attacker is parametrised with α = mpk. In the secret
key setting (SK), we have α = ϵ.

– Semi-adaptive security (SAD): the attacker places all calls to Enc before
calling KeyGen.

– Non function-hiding (standard) security: leakage Φ is extended to also pro-
vide the inputs to the KeyGen oracle (i.e., the keys are explicitly given to the
simulator). Again we use FH to denote the stronger function-hiding setting.

– Single-message security (one): the attacker places only one call to LoRx.

For all such variants, the advantage of an an attacker A against FE is defined by
the following difference of probabilities, where xx will specify the security variant
according to the above conventions.

Advxx-SIM
FE,A ( ) = |Pr[RealFE,A( )⇒ 1]− Pr[IdealFE,A,S( )⇒ 1]| .

For the same set of adversarial restrictions, simulation-based security implies
indistinguishability-based security. To see this, observe that any IND attacker A
can be used to construct a SIM attacker B as follows. B initially chooses a bit b
uniformly at random and converts the left-right calls placed by A into encryption
and key extractions calls xb (resp. yb) that depend on b. By giving the oracle
answers back to A, our SIM adversary ensures that, when running in the real
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world, it perfectly simulates the environment in the IND experiment for A. The
output of A, which B uses as its own will therefore be correlated with b in a
visible way if A is a successful IND attacker. Consider now the ideal world and
any simulator Sim. It is easy to see that, given the restrictions on the left-or-right
calls placed by A, the input to the simulator will be information-theoretically
independent of b, which means that the output of A will also be independent of
b. The bias in the real-world output would therefore give B a visible advantage
in breaking SIM security. In other words, the existence of an IND attacker with
large advantage contradicts the existence of a successful simulator.

3 IPFE vs OFE

Perhaps the first question elicited by the close relationship between IPFE and
OFE is whether generic transformations of one scheme into the other one are
possible. We briefly explore a couple of simple transformations where one at-
tempts to construct an OFE from an IPFE by somehow encoding an OFE key
y as a vector of keys yi for the underlying IPFE. We provide negative results
which show that no deterministic transformation (even one which depends on
a secret key) cannot yield a function-hidding OFE, independent of the security
level offered by the starting IPFE.

These negative results heavily rely on the determinism of the transformation
and suggest that one way around them would be to consider randomized trans-
formations. Indeed, for warm-up we present a simple OFE scheme constructed,
generically, from an IPFE scheme: the OFE key for some vector y is simply the
IPFE key for r ·y for some randomly selected scalar r: decryption of a ciphertext
which encrypts x is either 0 when x⊥ y or uniformly random otherwise. Clearly,
as soon as the adversary has more than one ciphertext, which each encrypts
messages known to the adversary, then can recover information about r and y.
In effect, we can only prove that the scheme is one-SAD-FH-IND-secure.

For space reasons we describe the negative results and the construction in
the full version of this paper. Nonetheless, even the cursory discussion above
indicates that one needs additional randomization also in the ciphertexts. The
scheme which we present next implements this intuition.

4 A construction in the generic group model

In this section we describe a simple construction which satisfies simulation-based
security in the generic group model (GGM). Our starting point is recent work by
Kim et al. [14] who propose a FH-IPFE scheme that is simulation-based secure
in the GGM. The construction follows the pattern of recent schemes where the
inner-product is recovered by solving a discrete logarithm problem over a small
domain by exhaustive search. Here we show that, by a simple adaptation where
we omit one group element in both keys and ciphertexts (which are the values
used to compute the basis for the discrete logarithm problem) we obtain a fully
secure OFE. Indeed, the information leaked by the scheme of Kim et al. is
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accessible to the GGM attacker only via a zero-testing oracle which becomes
useless if the basis for the discrete logarithm problem is hidden.

Our construction works as follows:

– Setup(1λ, n): On input the security parameter λ, the setup algorithm samples
an asymmetric bilinear group (G1, G2, GT , q, e) and chooses generators g1 ∈
G1 and g2 ∈ G2. Then, it samples an invertible square matrix B ∈ Zn×n

q

uniformly at random and sets B⋆ = det(B) ·(B−1)⊤. The algorithm outputs
the public parameters pp = (G1, G2, GT , q, e, n) and the master secret key
msk = (pp, g1, g2,B,B⋆).

– KeyGen(msk,y): On input the master secret key msk and a vector y ∈ Zn
q , the

key generation algorithm chooses an element α ∈ Zq uniformly at random
and outputs sky = [α · y⊤ ·B]1, i.e., a vector of encodings in G1.

– Enc(msk,x): On input the master secret key msk and a vector x ∈ Zn
q , the

encryption algorithm chooses an element β ∈ Zq uniformly at random and
outputs ct = [β · x⊤ ·B⋆]2, i.e., a vector of encodings in G2.

– Dec(pp, sk, ct): On input the public parameters pp, a secret key sk and a
ciphertext ct, the algorithm computes

∏n
i=1 e(sk[i], ct[i]) and returns ⊤ if

the result is equal to 1GT
and ⊥ otherwise.

Correctness of the scheme follows from the fact that the output value com-
puted by decryption encodes [αβ ·x⊤ ·B ·B⋆⊤ ·y]t, which therefore includes ⟨x, y⟩
as a multiplicative factor. The following theorem establishes the security of the
scheme.

Theorem 1. The above OFE scheme is simulation-based secure OFE in the
GGM.

Sketch. The proof is an adaptation of the original argument in [14]. Specifically,
we describe a simulator that, not only answers key extraction and encryption
queries in a way which is identical to what happens in the real world, it also
simulates the operation of the generic bilinear group operations in a way which
is indistinguishable from what the attacker sees in the real world. Due to the
operation of the generic group model, all queries that the adversary makes can
be perfectly simulated by returning fresh random labels for all group elements
resulting from key extraction, encryption, and bilinear group operations bar
zero testing. Simulating zero-test queries in the source groups is natural: the
simulator answers zero if and only if the queried label corresponds to a formal
polynomial that is identically zero; all non-zero answers can be justified by the
Schwartz-Zippel lemma. The more intricate part of the simulation lies in zero-
test queries for the target group, where one must take into account that formal
polynomials that are not identically zero in the simulator’s view, correspond to
cancellations in the real world. Here we show that the simulator can identify
honest evaluations of inner products between orthogonal vectors (these cases
can be detected because orthogonality is revealed in the leakage provided to
the simulator) and correctly answer zero to linear combinations of such cases.
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Setup( ):
A←← Zk+1×k

q

For i ∈ [n]:
W i ←← Zk+1×k+1

q

msk← (A, {W i}ni=1)

mpk← ([A⊤]1, {[A⊤W i]1}ni=1)
Return (msk,mpk)

Enc(mpk, x):
s←← Zk

q

U ←← Zk+1×k+1
q

M0 ← s⊤A⊤

ct← [M0||{M0(xiU +W i)}ni=1]1
Return ct

KeyGen(msk, y):
r ←← Zk+1

q

sk← [−
∑n

i=0 yiW ir||{yir}ni=1]2
Return sk

Dec(sk, ct):
Return ⟨ct, sk⟩ = 1

Fig. 3. First variant of Wee’s scheme. Decryption is presented using inner-product nota-
tion, denoting in compact form the pointwise pairing of ciphertext and key components
(each comprising (n + 1)(k + 1) group elements), followed by a product to obtain a
single group element.

We adapt the argument in [14] to show that all other cases can be answered as
non-zero. The details are deferred to the full version of this paper.

⊓⊔

5 A construction in the standard model

In this section we show a construction of a function hiding OFE that is provably
secure in the standard model. Our construction is developed in several steps.

Intuitively, our goal is to adapt a technique originally developed by Lin [15] in
the context of functional encryption for inner products to the case of OFE. Recall
that Lin’s technique allows to combine two instances of a functional encryption
scheme for inner products to obtain a (secret key) functional encryption scheme
for inner products that also provides function hiding guarantees.

Aiming at the simplest possible solution, the natural approach would be to
try to combine Lin’s technique with the clever OFE recently proposed by Wee
in [22] . Interestingly, adapting Lin’s transform to the orthogonality setting is
not at all immediate. Indeed, to guarantee correctness, the two instances of the
OFE need to be instantiated with different, but matching, parameters. This
is in sharp contrast with the basic IPFE setting where the transformation is
less demanding on the underlying encryption schemes. In particular, we need to
develop two novel variants of the basic Wee’s scheme, both of which we discuss
next.

5.1 First Scheme

The first scheme closely follows the blueprint of Wee’s original scheme. The
difference is that matrices U and Wi are uniformly chosen in Zk+1×k+1

q , rather
than in Zk+1×k

q as in Wee’s scheme. This is shown in Figure 3. Correctness follows
from the fact that the result of decryption includes ⟨x, y⟩ as a multiplicative factor

12



Setup( ):
A←← Zk+1×k

q

For i ∈ [n]:
W i ←← Zk+1×k+1

q

msk← (A, {W i}ni=1)

mpk← ([A⊤]2, {[A⊤W i]2}ni=1)
Return (msk,mpk)

Enc(mpk,X):
s←← Zk

q

U ←← Zk+1
q

M0 ← s⊤A⊤

ct← [M0||{M0(UXi +W i)}ni=1]2
Return ct

KeyGen(msk, y):
r ←← Zq

sk← [−
∑n

i=0 rY
⊤
i W

⊤
i ||{rY ⊤

i }ni=1]1
Return sk

Dec(sk, ct):
Return ⟨ct, sk⟩ = 1

Fig. 4. Second variant of Wee’s scheme. Decryption notation is as in Figure 3.

in the exponent. Indeed, decryption computes in the exponents:
n∑

i=1

yiM0(xiU +W i)r −M0

n∑
i=0

yir
⊤W⊤

i = M0Ur⟨x, y⟩ ∈ Zq .

The following theorem establishes security and follows an argument similar
to Wee’s construction [22]. A sketch of the proof is given in the full version of
this paper.

Theorem 2. If MDDH and DDH assumptions hold respectively in G1 and G2

then the modified scheme of Wee in figure 3 is one-SAD-SIM secure.

5.2 Second Scheme
The second construction modifies Wee’s scheme in the sense that it allows to
compute

∑
i XiY i for X = (X1, . . . ,Xn) and Y = (Y 1, . . . ,Y n) where for all

i ∈ [n], Xi ∈ Z1×k+1
q and Y i ∈ Zk+1

q . Intuitively, this corresponds precisely to
the computation carried out in the exponents by the decryption algorithm of
the first variant of Wee’s scheme we presented above. The scheme can be found
in Figure 3.

Correctness can be verified by rewriting the decryption operation as
n∑

i=1

(rM0(UXi +W i)Y i)−M0

n∑
i=0

rW iY i = rM0U

n∑
i=1

XiY i

Again, the following theorem shows that these modifications do not affect se-
curity. The proof is similar to the scheme of Wee [22] and is given in the full
version of this paper.

Theorem 3. If DDH and MDDH assumptions hold respectively in G1 and G2,
then the modification of Wee’s scheme in figure 4 is one-SAD-SIM secure.
As a simple corollary of theorems 2 and 3 we have the following
Corollary 1. The two modifications of Wee’s scheme are (many) SAD-IND se-
cure.
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5.3 Weak Function-Hiding Functional Encryption for Orthogonality

Now, we can give the details of our new Lin-like transform for orthogonality.
For simplicity, we present our results in the fully selective setting, but the proof
easily generalises to the fully adaptive setting if the underlying constructions
are themselves fully adaptive. Moreover, for clarity of exposition, we present
the transform in an abstract, generic way. In particular we first establish a set
of conditions (see Definition 3 below) for which the transformation works and
then show that our two schemes from sections 5.1 and 5.2 trivially satisfy these
conditions. We stress that the transformation produces a scheme that is weakly
function hiding. Still, this is enough for us as we can move to a full-fledged FH
solution using the efficient Lin-Vaikuntanathan [16] compiler.10

Definition 3. Let Γ = (Setup,KeyGen,Enc,Dec) be a Functional Encryption
scheme for orthogonality (OFE), we say that Γ is [·]αβ-OFE, for α, β ∈ {1, 2} if
the following properties are satisfied.

1. There are ppt algorithms RowKey and RowEnc such that,

Enc(mpk, ·) = [RowEnc(msk, ·)]α and KeyGen(msk, ·) = [RowKey(msk, ·)]β

for all (mpk,msk) in the support of Setup( ).
2. There are efficiently computable functions Fe and Fk such that

Enc(mpk, ·) = Fe(mpk, [·]α) and KeyGen(msk, ·) = Fk(msk, [·]β) .

3. For both schemes, and for all ciphertexts in the support of Enc(mpk, x) and
keys in the support of KeyGen(msk, y), there exists some scalar δ that is a
function of the randomness used in algorithms Enc and KeyGen, such that
decryption returns [⟨x, y⟩]δ⊤ computed as

Dec(Enc(mpk, x),KeyGen(msk, y)) = [⟨RowEnc(mpk, x),RowKey(msk, y)⟩]⊤ .

It is easy to see that our first and second modification of Wee’s scheme are
respectively [·]12-OFE and [·]21-OFE schemes. We now show that, if Γ1 and Γ2 are
two [·]12 and [·]21 OFE schemes, respectively, then the generic OFE construction
in Figure 5 is a secret-key (weakly) function hiding OFE. Correctness of the
construction follows from the following derivation:

Γ2.Dec(sk, ct) = [⟨sk2, ct1⟩]δ2T = [⟨x, y⟩]δ1δ2T

Theorem 4. If Γ1 and Γ2 are SAD-IND secure OFE schemes then our scheme is
selectively secure OFE with (weak) function hiding.

10The compiler has been proposed in the IPFE setting, but trivially extends to the
OFE setting.
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Setup( ):
(msk1,mpk1)←← Γ1.Setup(n)
(msk2,mpk2)←← Γ2.Setup(n+ 1)
Return (msk1,msk2,mpk2)

Enc(msk, x):
(msk1,msk2)← msk
ct1 ←← Γ1.RowEnc(msk1, x)
ct←← Γ2.KeyGen(msk2, ct1)
Return ct

KeyGen(msk, y):
(msk1,msk2)← msk
sk1 ←← Γ1.RowKey(msk1, y)
sk←← Γ2.Enc(mpk2, sk1)
Return sk

Dec(sk, ct):
Return Γ2.Dec(sk, ct)

Fig. 5. Lin-like transform for orthogonality. We slightly abuse notation by using
Γ1.Setup(n) and Γ2.Setup(n + 1) to denote the size of message and key vectors sup-
ported by each scheme when constructing a function-hiding OFE for vectors of size
n.

Proof. The proof follows from a sequence of games, where Game0 is the real game
in the definition of indistinguishability-based security, when b = 0, Game1 is the
same game when b = 1, and Gameh is a hybrid game that proceeds as Game0,
except that Enc is run on inputs xj1. Thus, for the security proof it is enough
to prove that Gameh is computationally indistinguishable from both Game0 and
Game1.

Indistinguishability of Game0 and Gameh: Let A0−h be any adversary that is
able to distinguish between these two games. We construct B that breaks the
SAD-IND-security of Γ1. B runs A0−h, interpolating betweeen the two games
while interacting with the experiment SAD-IND, as follows.
B gets the the public key mpk1 of scheme Γ1 and challenges (xj0, x

j
1) and

(yi0, y
i
1) from A0−h. Then B runs Γ2.Setup itself to get a pair (msk2,mpk2), calls

the external LoRx oracle to get encryptions under Γ1 of all the challenges [ctj1]1 =

Γ1.Enc(mpk1, x
j
b), and computes ctj = Γ2.KeyGen(msk2, ct

j
1) = Fk(msk2, [ct

j
1]1),

where Fk comes from definition 3. Then, B sends queries yi0 to key extraction
in the external game, receives secret keys [ski1]2 = Γ1.KeyGen(msk1, yi0) and
computes

ski = Γ2.Enc(mpk2, sk
i) = Fe(mpk2, [sk

i
1]2)

It provides all ciphertexts and keys to the attacker, waits for the adversary’s
choice, and uses this as it’s own output. It is easy to see that any change in
the behaviour of A0−h between the two games is immediately translated into a
distinguishing advantage against Γ1. This is because all queries placed by B are
admissible: B must satisfy restriction xj0⊥yi0 = xj1⊥yi0 on all queries and this is
guaranteed because A0−h has output challenges that satisfy xj0⊥yi0 = xj1⊥yi0 =

xj1⊥yi1.

Indistinguishability of Gameh and Game1: Let Ah−1 be any adversary that is
able to distinguish between these two games. We construct B that breaks the
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SAD-IND-security of Γ2. B runs Ah−1, interpolating betweeen the two games
while interacting with the experiment SAD-IND, as follows.
B gets the the public key mpk2 of scheme Γ2 and challenges (xj0, x

j
1) and

(yi0, y
i
1) from Ah−1. Then B runs Γ1.Setup itself to get a pair (msk1,mpk1),

computes

ski1,c = Γ1.RowKey(msk1, y
i
c) for all i and c ∈ {0, 1} ,

and calls LoRx in the external game on (ski1,0, sk
i
1,1) to get ski = Γ2.Enc(mpk2, sk

i
1,b).

B then computes ctj1 = Γ1.RowEnc(mpk1, x
j
1), calls key extraction in the external

game to obtain ctj = Γ2.KeyGen(msk2, ct
j
1). Finally, B provides all ciphertexts

and keys to the attacker, waits for the adversary’s choice, and uses this as it’s
own output.

It is easy to see that any change in the behaviour of Ah−1 between the two
games is immediately translated into a distinguishing advantage against Γ2. This
is because all queries placed by B are admissible, which we now justify. B must
satisfy restriction ctj1⊥sk

i
1,0 = ctj1⊥sk

i
1,1 on all queries. Note that [⟨ctj1, sk

i
1,b⟩]T =

[⟨xj1, yib⟩]
δ1
T , so restriction ctj1⊥sk

i
1,0 = ctj1⊥sk

i
1,1 is equivalent to xj1⊥yi0 = xj1⊥yi1.

Furthermore, Ah−1 outputs challenges that satisfy xj0⊥yi0 = xj1⊥yi0 = xj1⊥yi1.
Thus, all queries placed by B are admissible. ⊓⊔

5.4 Achieving adaptive security

An obvious way to make the scheme given in section 5.3 adaptive secure, would
be to employ complexity leveraging.

However, a naive application of complexity leveraging to the scheme from
section 5.3 would result in a security loss 2τ where τ = qe|x| + qs|y|, (here qe
and qs are, respectively, the maximum number of encryption queries and secret
key queries allowed). This is because the scheme is selective both with respect
to challenge messages and with respect to challenge keys. Furthermore, since it
lives in the symmetric setting we need to guess all the challenges in advance.
Notice that, while in our setting both |x| and |y| might be small, this is not
necessarily the case for τ .

We overcome this by “anticipating” the complexity leveraging step to the
basic schemes. Recall that the construction from section 5.3 builds upon two
schemes Γ1 and Γ2 that are in the public key setting. These latter schemes,
in turn, are assumed to guarantee SAD-IND security, which means they also
guarantee one-SAD-IND security.

Our key observation is to apply complexity leveraging to these basic one-
SAD-IND secure building blocks. This means that assuming that x (resp. y) is
sufficiently small, complexity leveraging induces only a polynomial 22|x| (resp.
22|y|) loss, as one single challenge query has to be guessed. Next, we build our
way towards a fully fledged (adaptively secure) construction via the following two
observations. First, in the public key setting, one-IND implies (many) IND via
a standard hybrid argument that only induces a polynomial loss in the security
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reduction. Second, Theorem 4 trivially extends to the adaptive setting without
introducing additional losses.

All these observations combined mean that the resulting scheme achieves
adaptive security with only a max(22|x|, 22|y|) security loss with respect to the
selective secure solution we started from. In what follows we prove this formally.
We start with the following theorem (its proof appears in the full version of this
paper).

Theorem 5. Let n, be a integer bound on the max size of admissible messages.
If Γ is a ϵ one-SAD-IND-secure functional encryption for orthogonality (where ϵ
denotes the advantage of adversary attacking the security of the scheme), then
Γ is also 22nϵ one-IND-secure.

Claim. If Γ is a ϵ′-one-IND-secure functional encryption for orthogonality, then
it is also (q + 1)ϵ′-IND-secure (where q is the number of ciphertext challenges).

The proof is a straightforward hybrid argument.

Claim. If Γ1 and Γ2 are respectively ϵ1 and ϵ2-IND-secure functional encryption
schemes for orthogonality, then the construction from section 5.3 is (ϵ1 + ϵ2)-
IND-secure.

The proof is the same as that given in section 5.3 and is, therefore, omitted.
Putting together all the claims we have the following result.

Corollary 2. If Γ1 and Γ2 are ϵ-one-SAD-IND-secure OFE, then our proposed
construction is 22n((qx +1)+ (qy +1))ϵ-IND-secure FH-OFE scheme (where n is
the length of the messages and qx and qy are respectively the number of ciphertext
and secret key challenges).

Thus, the total factor of security that we will lose is 22n((qx + 1) + (qy + 1)).

6 Experimental evaluation

We have implemented our new OFE schemes in C++ starting from Shoup’s
Number Theory Library11 (NTL) on top of the GNU Multiprecision Library12

(GMP), and in integration with and the SCIPR Lab’s library for Finite Fields
and Elliptic Curves13 (libff). We used NTL to deal with matrix and vector oper-
ations carried out in the exponents, and libff as a provider for the pairing group.
Conversions between the NTL representations and the libff representations make
the implementation sub-optimal in terms of performance in key generation and
encryption. No such conversions are needed for decryption. We used the pairing
group over a curve known as BN128 from libff, aka BN254,14 which is deployed

11https://www.shoup.net/ntl/
12https://gmplib.org/
13https://github.com/scipr-lab/libff
14https://github.com/zcash/zcash/issues/2502
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GGM SM
N Extract Encrypt Decrypt Extract Encrypt Decrypt
16 6 2 10 36 15 60
32 12 4 19 71 28 116
64 22 9 37 139 60 231
128 46 20 73 270 112 463
256 100 44 155 558 229 968

GGM SM
N Keys Cph Keys Cph
16 0,99 0,50 6,34 3,18
32 1,99 1,00 12,30 6,16
64 3,98 1,99 24,23 12,14
128 7,95 3,98 48,09 24,09
256 15,91 7,97 95,81 48,00

Table 2. Benchmarking results for our generic-group-model construction (GGM) and
our standard-model construction (SM). On the left-hand side, timing values are given in
milliseconds. On the righ-hand side, key and ciphertext lengths are given in kilobytes.
Each row corresponds to an increasing vector size N . Although similar in terms of
group operations, the execution times and sizes for keys and ciphertexts differ due to
the different sizes of representations of G1 and G2 elements in an asymmetric pairing.

for example in ZCash but gradually being abandoned due to the fact that it of-
fers less than 128 bits of security.15 All our implementations are single-threaded,
and could be further optimized via parallelization. For all of these reasons, we
present this implementation as a proof of concept, aiming to give an approx-
imate idea of the performance one might get if deploying such schemes. The
implementation is available upon request.

Our benchmarking results were collected in a standard MacBook Pro ma-
chine with a 2.9 GHz Intel Core i5 and 16 GB or RAM. For every chosen set
of parameters, we repeated the experiment 10 times, and took the median of
the timings. In all cases we observed a coefficient of variation below 10%. Ta-
ble 2 provides execution times and key/ciphertext lengths for growing sizes of
key/message vectors. For our standard model construction, note that we are ac-
tually using double-sized vectors, in order to guarantee full security according to
the discussion in Section 5. We observe the linear growth in both execution times
and key/ciphertext length, which is to be expected, and highlight the fact that
the overhead of going for a standard-model security guarantee is roughly 6-fold.
The most insteresting conclusion we can draw, although not surprising due to
the close match between our GGM scheme and that proposed in [14], is that
our implementation is roughly twice as fast for the same security level (112-bits)
than the results reported for the original inner-product encryption scheme. This
shows that we bridged the gap between the two primitives with essentially no
efficiency loss (this is explained by the fact that we deal with a generic attacker).

7 Applications of Function-Hiding OFE

Our function-hiding OFE constructions can be applied in all the scenarios where
secret-key functional encryption for hyperplane-membership [12,8] and hidden-
vector encryption [10] are used. These include outsourcing of computations of
CNF/DNF Boolean formulas, outsourcing subset relations and range queries on
encrypted data. In particular, in the latter example no information is leaked

15https://twitter.com/pbarreto/status/779852921135476738
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about encrypted data and the query, besides the value of the predicate itself.
Indeed, since our constructions are function-hiding, they also imply property-
revealing encryption schemes [7] for such predicates. To see this, consider the
construction of a property-revealing encryption scheme where an encryption of
message x consists of both an encryption and a key token for x under our
function-hiding OFE. Then, the orthogonality relation can be publicly computed
over all pairs of encrypted messages as in the property revealing setting. In
fact, this construction gives rise to a single-key two-input functional encryption
scheme, which in turn implies a property-revealing encryption scheme [14].

Furthermore, both our GGM construction and our standard model construc-
tion are the most efficient to date under comparable assumptions. However,
our standard model construction comes with a message space constraint due to
the application of a complexity leveraging argument that we use to achieve full
adaptivity.

We therefore focus our attention on applications of function-hiding OFE
where this constraint is not a limitation. Our goal is to emphasize that the
optimized complexity leveraging argument that we give in Section 5 is crucial
to validate our standard model construction for applications where adaptive
security is a requirement.

We recall that all our schemes can securely operate over message sizes of
roughly |M| = qn, where q is the cardinality of the cyclic groups over which
the schemes are implemented and n is the vector length. However, our standard
model scheme from Section 5 achieves only selective security for both keys and
messages. A naive complexity leveraging argument to obtain adaptive security
would therefore lead to a security loss in the range of |M|k+1, where k is an
upper bound on the number of key extraction queries that the scheme should
tolerate. However, in Section 5 we have shown how to obtain adaptive security
with only |M| loss. This motivates our analysis of applications of function-hiding
OFE where only a small fraction of the full message space |M| ≈ 2n ≪ qn is
used. We stress that no such restrictions apply to our GGM construction, which
therefore can be used to replace with better performance all applications of OFE
proposed in the literature.

Privacy-preserving subset relation Let us consider a universe U of n elements
u1, . . . , un and the following two representations of sets A,B ⊆ U in this universe
as vectors x, y of length n+ 1 such that

mRep(A) :=

xi = 1 if ui ∈ A, 1 ≤ i ≤ n
xi = 0 if ui /∈ A, 1 ≤ i ≤ n
xn+1 = −1

kRep(B) :=

yi = 1 if ui ∈ B, 1 ≤ i ≤ n
yi = 0 if ui /∈ B, 1 ≤ i ≤ n
yn+1 = |B|

Clearly, ⟨mRep(A), kRep(B)⟩ = 0 if and only if B ⊆ A. Furthermore, the power
set P(U) has size 2n and both of these representations give injective mappings
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from P(U) to Fn+1
q . This means that, by using these encodings to compute the

subset relation over P(U), we are in effect operating over a message space of size
2n.

The computation of the subset relation over a universe of small size can
therefore be securely outsourced to an untrusted server with full adaptivity (i.e.,
new messages can be encrypted interleaved with query evaluations) with the
guarantee that the orthogonality predicate over all message/key pairs is leaked
to the untrusted server. Furthermore, no information is leaked to an external
observer or a snapshot adversary that just observes encrypted messages at rest.

One direct application of this primitive is to allow topological sorting over
encrypted data, as any partial order can be computed by using the subset rela-
tion. Another application of the subset relation is conjunction keyword search:
fix a dictionary of keywords of size n and for each document in a database, en-
crypt the set of keywords that match that document; then the subset relation
can be used to identify all the documents that match all the keywords in the set
associated with an extracted key. This subsumes the simplest form of single-key
symmetric searchable encryption and reduces leakage for conjunctive queries by
hiding the size of the matched subset. However, the security loss of our scheme
requires impractically small dictionaries. Next however, we consider two other
applications of the subset relation where this is not the case.
Range Queries A standard method to encode range queries of the sort a < x < b
is to partition the range of values that x can take into n disjoint intervals of
equal size 0 < i1 < i2 < . . ., and then encode x as the singleton {ik} such
that ik−1 ≤ x < ik. Let Ix be the representation of a value x. Then, the check
ia ≤ x < ib can be computed as Ix ⊆ {ia, . . . , ib}. This also applies to cases where
x is represented in generalized form as belonging to a range of more than one
intervals. Our standard-model function-hiding OFE therefore permits dealing
with range queries whenever the granularity of the used intervals is acceptable
for reasonably small n. In particular, for x coming from a small domain, the
same technique can be used to implement the comparison operator and there-
fore implies a standard order revealing encryption scheme. For implications and
optimized variants of these techniques we refer the interested reader to, e.g., [21].
Access Control It is well known that access-control and, more generally, data-
flow control restrictions can be represented as partial orders, and therefore imple-
mented using a set representation and the subset relation. Then, the enforcement
of an access control mechanism can be outsourced to an untrusted remote server,
while keeping the details of the security lattice secret. For example, consider a
database of encrypted resources stored in the remote server, each along with
an encryption of the point in the access-control lattice that defines the minimal
set of permissions A required to access it. Then, by providing the server with a
decryption key for an OFE that encodes the set of permissions assigned to a user
B, the server can decide whether the operation is allowed by computing A ⊆ B.
Any security lattice with n nodes is isomorphic to a partially ordered subset of
the power set P([n]), and can be therefore outsourced with our standard model
scheme if n is reasonably small.
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