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Abstract—Cryptographic pairings are important primitives for
many advanced cryptosystems. Efficient computation of pairings
requires the use of several layers of algorithms as well as
optimizations in different algorithm and implementation levels.
This makes implementing cryptographic pairings a difficult task
particularly in hardware. Many existing hardware implemen-
tations fix the parameters of the pairing to improve efficiency
but this significantly limits the generality and practicality of the
solution. In this paper, we present a compact and programmable
yet high-performance architecture for programmable system-on-
chip platforms designed for efficient computation of different
cryptographic pairings. We demonstrate with real hardware that
this architecture can compute optimal ate pairings on a Barreto-
Naehrig curve with 126-bit security in 2.18 ms in a Xilinx Zynq-
7020 device and occupies only about 3200 slices, 36 DSPs, and 18
BRAMs. We also show that the architecture can support different
types of pairings via microcode updates and can be implemented
on other reprogrammable devices with very minor modifications.

Index Terms—Cryptographic pairing, system-on-chip, HW/SW
codesign, FPGA, optimal Ate pairing, Barreto-Naehrig curves.

I. INTRODUCTION

In cryptology, bilinear pairings were first used for crypt-
analysis [1] but have been later used in building various
advanced cryptosystems, such as tripartite key exchange [2],
identity-based encryption [3], short signatures [4], attribute-
based encryption [5], [6], searchable encryption [7], functional
encryption [8], [9], etc. This has created a need for efficiently
computable cryptographic pairings and resulted in significant
amounts of research in improving efficiency of pairings on
both algorithm and implementation levels. On the theoretical
side, notable research results include various types of pairing
algorithms (e.g., Tate [10]–[12], ηT [13], ate [14], R-ate [15],
and optimal ate [16] pairings) and pairing-friendly elliptic
curves (in particular, Barreto-Naehrig (BN) curves [17]).

On the implementation side, efficient implementations have
been presented both in software [18]–[22] and hardware [23]–
[37], the latter including both Field Programmable Gate Arrays
(FPGAs) and Application Specific Integrated Circuits (ASICs).
Pairings are very complicated operations including multiple
layers of algorithms (e.g., [22] utilizes 31 algorithms to com-
pute an optimal ate pairing) and efficient pairing computations
require careful choices of parameters and algorithmic tricks.
Consequently, their implementation is notoriously difficult and
laborious, especially, in hardware.

While software provides natural flexibility and allows sup-
port for multiple pairings as well as easily updating pairing

algorithms, hardware is significantly more rigid. Although
fixing parameters leads to a more efficient implementation,
it may come with a significant penalty in practical feasibility
because it reduces flexibility regarding types of pairings and
curves and hinders the adaptation of new algorithms. In
theory, flexibility could be provided with reprogrammable
hardware but, in practice, it may be hard because pairings
are complicated algorithms and designing separate implemen-
tations for all pairing types and parameter sets would be a
daunting task. Hence, there is a clear need for flexible high-
performance implementations that can be used for efficiently
computing different cryptographic pairings. Typically, pairings
are only a part of a cryptosystem and also other operations
must be supported by an implementation in order to realize
the cryptosystem (e.g., identity-based encryption, searchable
encryption, or functional encryption schemes). Hence, an
implementation of pairings should be compact and achieve
a good speed-area tradeoff.

Hardware/Software (HW/SW) codesign paradigm is suitable
for pairing computations and their use in larger cryptosystems
because complicated control flows can be implemented in
software while still receiving the benefits of hardware ac-
celeration effectively with efficient yet compact accelerator
cores. This is particularly due to the fact that complicated
state machines required for controlling complex pairing com-
putations are easy and efficient to implement in software
whereas they incur significant area overheads in hardware.
A HW/SW codesign is also scalable in the sense that it can
be extended with additional cores for parallel pairings and/or
other operations needed by the cryptosystem. In this paper, we
will focus on programmable System-on-Chip (SoC) platforms
(e.g., Xilinx Zynq SoCs) that realize the HW/SW codesign
paradigm with hardwired processors (typically ARM cores)
and reprogrammable hardware (i.e., FPGAs).

To keep the discussion concise and clear, we focus particu-
larly on optimal ate pairings [16] over BN curves [17] and the
specific parameters used by Beuchat et al in [22]. Nevertheless,
we emphasize that the implementation is generic and can be
used for implementing various pairings on different curves.

In this paper, we provide the following contributions:
• We describe a compact programmable SoC architecture

for cryptographic pairings that achieves high performance
and very good speed-area tradeoff. The architecture is
optimized for the resources of modern reprogrammable
SoCs such as DSPs, BlockRAMs, and hard ARM cores.



Algorithm 1: Optimal ate pairing over BN curves.
Input: P ∈ G1 and Q ∈ G2.
Output: aopt(Q,P ) = f , where f ∈ Fp12 .
Constant: s = 6t+ 2 =

∑L−1
i=0 si 2i, where

si ∈ {−1, 0,+1}.
1 T ← Q, f ← 1
2 for i = L− 2 to 0 do
3 f ← f2 · lT,T (P ); T ← 2T
4 if si 6= 0 then
5 f ← f · lT,siQ(P ); T ← T + siQ

6 Q1 ← πp(Q); Q2 ← −πp2(Q)
7 f ← f · lT,Q1

(P ); T ← T +Q1

8 f ← f · lT,Q2
(P ); T ← T +Q2

9 f ← f (p12−1)/r

10 return f

• The architecture supports microcode updates that can
be used for supporting different cryptographic pairing
algorithms, curves, and other parameters with the same
accelerator architecture. This makes our architecture sig-
nificantly more viable for practical deployment than hard-
ware implementations with fixed parameters.

• We evaluate the proposed HW/SW codesign system on
real hardware using Avnet Zedboard including a Xilinx
Zynq-7020 programmable SoC chip and showcase the
above-mentioned benefits.

The rest of this paper is organized as follows. We briefly
survey the relevant algorithmic background in Section II.
We present the architecture of our implementation and the
computation procedures in Section III followed by results and
analysis in Section IV. Finally, we end the paper by drawing
conclusions in Section V.

II. PRELIMINARIES OF PAIRING

A cryptographic pairing is a bilinear map G1 × G2 → G3

where G1 and G2 are additive groups and G3 is a multiplica-
tive group. In the context of optimal ate pairings on BN curves,
G1 and G2 are additive groups of points on elliptic curves
E(Fp) and E(Fpk ) and G3 is the multiplicative group of Fpk .
The parameters must be chosen so that discrete logarithms in
all three groups are infeasible; e.g., for approximately 128-bit
security level, we need a 256-bit prime p and k = 12.

The algorithm for computing an optimal ate pairing over
BN curves is given in Alg. 1. The two main operations in
the algorithm are the Miller loop in lines 2–5 and the final
exponentiation in line 9. The former consists of elliptic curve
arithmetic in E(Fp2) and line evaluations in Fp12 that can be
interleaved. The latter is an exponentiation in Fp12 that can
be decomposed into f (p6−1)(p2+1)(p4−p2+1)/r, of which the
two first terms can be efficiently computed with Frobenius
operators and conjugations. The last term is called the hard
part and is computationally the most demanding part.

We demonstrate our design for computing Alg. 1 by using
the subalgorithms from [22]. They used t = 262 − 254 + 244

that enables efficient computation of the Miller loop and the
hard part of the final exponentiation while providing 126-bit
security level. The primes p and r are as follows: p = 36t4 +
36t3 + 24t2 + 6t + 1 and r = 36t4 + 36t3 + 18t2 + 6t + 1.
In [22], Fp12 is represented as a tower extension field with the
following irreducible binomials:

Fp2 = Fp[u]/(u2 − β),where β = −5 (1)

Fp6 = Fp2 [v]/(v3 − ξ),where ξ = u (2)

Fp12 = Fp6 [w]/(w2 − v). (3)

Consequently, arithmetic operations in the above fields are
computed with series of operations in Fp. In particular,
the Karatsuba-like construction allows multiplications in the
quadratic extension fields Fp2 and Fp12 to be computed
with three multiplications (and additions/subtractions) in the
underlying fields Fp and Fp6 , respectively. Multiplications in
Fp6 require six multiplications in Fp2 [22]. Lines 3, 5, 7, and 8
are computed using formulae from [18], [38]. Line 6 requires
only three multiplications and two negations in Fp. Line 9
follows the ideas of [39] and consists of multiple low-level
algorithms and optimizations.

III. ARCHITECTURE AND IMPLEMENTATION

In this section, we present our architecture for pairings
using the HW/SW codesign approach in a programmable SoC.
Most of the existing hardware-based pairing implementations
have focused on maximizing the speed at the expense of
resource utilization and programmability. The few flexible
designs that support different pairings and parameters are
significantly slower. The HW/SW codesign approach allows
an efficient tradeoff combining high performance with low
resource usage and flexibility. This is particularly true for
pairing computations where the main difficulty in this respect
is the high number of different algorithms that must be
supported but where computations mostly rely on the same
low-level operations (i.e., Fp arithmetic).

A. High-Level HW/SW Codesign

Our architecture is constructed as a generic HW/SW code-
sign and can be instantiated in various programmable SoCs
with minor modifications. However, in this paper, we consider
mainly instantiations in Xilinx all-programmable SoCs be-
cause we use Avnet ZedBoard and Xilinx ZCU102 evaluation
kits for prototyping. We will refer to the specific features
of those programmable SoCs whenever such a distinction is
required. Also, to provide programmability and to decrease
resource utilization, the HW part of our architecture uses a
microprogramming appraoch instead of implementing hard-
wired Finite State Machines (FSMs) for the specific algorithms
of pairing computations. Because microprogramming provides
flexibility, scalability, and programmability combined with a
small area footprint that would be hard to achieve with specific
FSMs in hardware.
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Fig. 1. High level architecture of the HW/SW codesign for the pairing.

Fig. 1 illustrates the high-level architecture of the HW/SW
codesign which is divided into two main parts including
SW and HW sides (called Processing System (PS) and Pro-
grammable Logic (PL) in Xilinx terminology, respectively).
The SW side consists of ARM core(s), on-chip and off-
chip (i.e., DDR3) memories, and other interconnection and
control. The HW side consists of Pairing Cryptography Pro-
cessor (PCP) and supporting modules (i.e., Xilinx IP cores
including Direct Memory Access (DMA), memory and pe-
ripheral interconnects, General Purpose Input/Output (GPIO),
and processor system reset). The data and control commu-
nications between the SW and HW sides are based on the
capabilities of the specific programmable SoC, and we use the
Advanced Extensible Interface (AXI) High Performance (HP)
and General Purpose (GP) interfaces of Xilinx SoCs. The HP
interface is employed for high-performance transfer of data
and microcodes, and the GP interface is used for transferring
commands and status (see Fig. 1). The SW side is respon-
sible for controlling the HW side and external peripherals.
Specifically, the SW side performs the high-level control and
managing of the execution-flow of the pairing computation.
These operations include sending and receiving data and
microcode packets to/from the PCP, issuing commands to the
PCP, offline and online programming of the PCP (by the
microcodes) and other modules in the HW side, receiving
the status of the PCP and other modules from the HW side,
and making control decisions based on the received status. As
shown in Fig. 1, all modules in the HW side are connected
in an AXI-based structure. The high-performance data and
microcodes communication between the SW side and the PCP
of the HW side is done via the HPx interface that connects to
the AXI memory interconnect block which further connects

to the PCP core via an AXI DMA block. Furthermore, the
command and status communication is handled via the AXI
peripheral interconnect block in the HW side. It is also used
for controlling the AXI DMA block used for high-speed data
and microcodes communications.

B. Pairing Cryptography Processor (PCP)

The cost of a pairing computation is generally expressed by
the total number of required field operations (i.e., multipli-
cations, additions/subtractions, constant-multiplications, and
inversions). Moreover, the efficiencies of the architecture and
the scheduling technique of field operations are the main
factors that determine the overall performance of a pairing
implementation [37]. The main objective in designing the PCP
is to achieve a good trade-off between programmability, speed,
and area requirements and to efficiently utilize the resources
of modern FPGAs (e.g., DSPs and BRAMs) in implementing
base field arithmetic (i.e., arithmetic in Fp). Because the tower
extension field arithmetic is ultimately based on Fp arithmetic,
this allows us to efficiently implement different arithmetic
operations in Fp2 , Fp4 , Fp6 , and Fp12 (tower field arithmetic).

Fig. 2 depicts the architecture of the PCP, which contains
external interface, arithmetic (datapath), control, Data Mem-
ory (DMEM), and Instruction Memory (IMEM) units. The
external interface unit is used for command, status, data, and
microcode communication with the external modules. The
IMEM contains a 1024× 72-bit simple dual-port RAM and a
controller for different address branch scenarios. IMEM stores
microcodes for algorithm(s) that are run in the PCP. Each
instruction in the microcodes consists of several fields that
apply the required commands to the corresponding units for
a working cycle of the PCP. The IMEM is partitioned into
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32 segments (i.e., 32× 2.25Kb = 72Kb), where each segment
can be loaded separately via the external interface unit during
the runtime. In addition, full microcode loading of the IMEM
can be done by the SW side directly during the runtime.

The control unit generates addresses for DMEM and makes
decisions for loop iterations and conditional statements. The
inputs and outputs of the arithmetic unit are connected to
DMEM, which stores data that is required during an algorithm
run. DMEM is a duplicated 1024×256-bit true dual-port RAM
with two independent read and write ports and supports “4-
read”, “2-write”, or “2-read and 1-write” operations from/to
DMEM. This facilitates efficient scheduling and parallelization
of Fp arithmetic. DMEM is also interfaced with the external
interface unit for communicating data with the SW side.

1) Arithmetic Unit: The datapath is shown in the top
right corner of Fig. 2 and it supports arithmetic in Fp with
arbitrary up to 256-bit primes p (i.e., up to 128-bit security).
It consists of three parts: source registers, arithmetic blocks,
and output selectors. The arithmetic blocks comprise three
Montgomery Modular Multiplier Blocks (MMMBs) and two
Modular Adder/Subtractor Blocks (MASBs) and they can op-
erate in parallel and independently of each other. The inputs of
all arithmetic blocks can be loaded from DMEM but the inputs
of MASBs can be additionally loaded from the outputs of the
arithmetic blocks. This arrangement together with the multi-
read/write feature of DMEM allows efficient computation
of tower extension field arithmetic. E.g., Fp2 multiplication
requires three Fp multiplications, which can be computed as
follows: [(a0 × b0), (a1 × b1), ((a0 + a1) × (b0 + b1))] ≡
[(Out1×Out2), (Out3×Out4), ((Out1+Out3)×(Out2+Out4))].
The modulus p and the precomputed Montgomery constant p′

are registered into the arithmetic unit.
a) MASB: The structure of MASB with a two-stage

pipeline is also illustrated in Fig. 2. Addition and subtraction in
Fp can be realized by two consecutive adder/subtractor circuits
which produce the result in two cycles. Due to the pipeline, its
throughput is one Fp addition/subtraction per cycle. Applying
two MASBs and connecting the outputs of the datapath back to
its inputs facilitates efficient field arithmetic operations such as
Fp2 addition/subtraction/negation, Fp2 multiplication/squaring,
and multiplications by small constants.

b) MMMB: Fig. 3 shows the structure details of MMMB
for computing Fp multiplications/squarings. It contains three
nested parts which are organized bottom-up as a Multiply-
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Add-Add Block (MAAB), a Multiply-Add-Add-Accumulator
Block (MAAAB), and the overall structure of MMMB. MAAB
is the primary computation block in the datapath and consists
of a 64× 64 bit Karatsuba multiplier (constructed from three
parallel 32 × 32 bit multipliers) combined with adders to
compute a × b + c + d (all 64-bit values) in a five-stage
pipeline. MAAB consumes most of the FPGA resources, has
the highest dynamic power consumption, and also contains
the critical path of PCP. In order to maximize its efficiency,
it is implemented using the DSP slices. In the next part,
MAAB is complemented with an accumulation operation (i.e.,
MAAAB). The lower part of the MAAB result is accumulated
with the previous higher part as well as with the previous
most significant bit of the accumulation result (i.e., the input
carry). The output carry and the higher part of the MAAB
result are stored for the next accumulation (see Fig. 3). The
latencies for computing rlow and rhigh are five and six clock
cycles, respectively. This accumulation method and the one
clock cycle difference between rlow and rhigh are essential for
efficient implementation of high-radix Montgomery modular
multiplication algorithm [40]. Finally, in the top part, MAAAB
(as the main computing core) as well as multiplexers, registers,
and FSMs are used for implementing radix-264 Montgomery
modular multiplication [40]. MMMB computes a multiplica-
tion/squaring in Fp with a total latency of 43 clock cycles, but
a new multiplication/squaring can be started already after 38
clock cycles due to the pipelined scheme.

C. Pairing Computations with the HW/SW Codesign

1) Working Principle and Scheduling of the Architecture:
The initialization step configures both the SW and HW sides
of the HW/SW codesign and must be done only once for every
pairing algorithm and curve parameter set. It includes loading
all inputs and curve parameters into DMEM of the PCP core in
the HW side. To implement a specific pairing algorithm, an in-
depth analysis of the algorithm is performed and all algorithms
of the pairing are translated into microcodes (i.e., several
segments and/or full sub-routine packs). The microcodes are
sequences of instructions for different units of the PCP core.
Each instruction set consists of fields such as arithmetic,

control, next IMEM address, DMEM address values, DMEM,
and IMEM fields. These fields apply all required controlling
signals for the units for a working cycle of the PCP core.
The microcodes are generated by hand through a customized
platform and scripts. In this architecture, each instruction set
has 72-bit length and it is divided to 14 fields. The microcodes
are stored in the (off/on-chip) SW side memory (i.e., DRR3).
Whenever a (set of) particular computation(s) needs to be
executed in PCP, then the corresponding microcode(s) are
loaded into IMEM by SW side through the external interface
unit, as explained before. According to the aforementioned
explanations, details of the memory taxonomy in the SW
and HW sides, SW/HW interaction principles, and the PCP
instruction set format are described in Fig. 4. Obviously, the
efficiency of microcodes for computing tower extension field
arithmetic greatly determines the overall performance of a
pairing computation and, therefore, special care should be
taken in scheduling operations and maximizing the utilization
of the datapath for these operations.

Fig. 5 illustrates how to efficiently implement and sched-
ule the tower extension field arithmetic (from Fp to Fp12 )
on the BN126 curve [22], which is the main focus of this
paper. On the top, it shows how to maximize the usage and
scheduling of the datapath for Fp arithmetic (i.e., multiplica-
tions/squarings, additions/subtractions) by utilizing parallelism
and pipelining. The datapath effectively hides the costs of
additions/substractions as they can be computed simultane-
ously with multiplications and this can be utilized for efficient
computation of tower field arithmetic. In the middle, Fig. 5
depicts the realization of Fp2 arithmetic using Fp arithmetic
and shows that a new Fp2 multiplication/squaring can be
computed after 38 clock cycles and, also, that up to eleven
Fp2 additions/subtractions can be done during each Fp2 mul-
tiplication/squaring. The Fp and Fp2 operations are further
used for implementing Fp4 , Fp6 , and Fp12 arithmetic (addition,
subtraction, negation, constant-multiplication, multiplication,
squaring, exponentiation, and inversion).

2) Optimal Ate Pairing Computation Steps: Implementa-
tion of optimal ate pairing algorithm (Alg. 1) in our HW/SW
codesign consists of three levels. The first level are the im-


