
Compact and Programmable yet High-Performance
SoC Architecture for Cryptographic Pairings

Milad Bahadori and Kimmo Järvinen
University of Helsinki, Department of Computer Science, Helsinki, Finland

{milad.bahadori, kimmo.u.jarvinen}@helsinki.fi

Abstract—Cryptographic pairings are important primitives for
many advanced cryptosystems. Efficient computation of pairings
requires the use of several layers of algorithms as well as
optimizations in different algorithm and implementation levels.
This makes implementing cryptographic pairings a difficult task
particularly in hardware. Many existing hardware implemen-
tations fix the parameters of the pairing to improve efficiency
but this significantly limits the generality and practicality of the
solution. In this paper, we present a compact and programmable
yet high-performance architecture for programmable system-on-
chip platforms designed for efficient computation of different
cryptographic pairings. We demonstrate with real hardware that
this architecture can compute optimal ate pairings on a Barreto-
Naehrig curve with 126-bit security in 2.18 ms in a Xilinx Zynq-
7020 device and occupies only about 3200 slices, 36 DSPs, and 18
BRAMs. We also show that the architecture can support different
types of pairings via microcode updates and can be implemented
on other reprogrammable devices with very minor modifications.

Index Terms—Cryptographic pairing, system-on-chip, HW/SW
codesign, FPGA, optimal Ate pairing, Barreto-Naehrig curves.

I. INTRODUCTION

In cryptology, bilinear pairings were first used for crypt-
analysis [1] but have been later used in building various
advanced cryptosystems, such as tripartite key exchange [2],
identity-based encryption [3], short signatures [4], attribute-
based encryption [5], [6], searchable encryption [7], functional
encryption [8], [9], etc. This has created a need for efficiently
computable cryptographic pairings and resulted in significant
amounts of research in improving efficiency of pairings on
both algorithm and implementation levels. On the theoretical
side, notable research results include various types of pairing
algorithms (e.g., Tate [10]–[12], ηT [13], ate [14], R-ate [15],
and optimal ate [16] pairings) and pairing-friendly elliptic
curves (in particular, Barreto-Naehrig (BN) curves [17]).

On the implementation side, efficient implementations have
been presented both in software [18]–[22] and hardware [23]–
[37], the latter including both Field Programmable Gate Arrays
(FPGAs) and Application Specific Integrated Circuits (ASICs).
Pairings are very complicated operations including multiple
layers of algorithms (e.g., [22] utilizes 31 algorithms to com-
pute an optimal ate pairing) and efficient pairing computations
require careful choices of parameters and algorithmic tricks.
Consequently, their implementation is notoriously difficult and
laborious, especially, in hardware.

While software provides natural flexibility and allows sup-
port for multiple pairings as well as easily updating pairing

algorithms, hardware is significantly more rigid. Although
fixing parameters leads to a more efficient implementation,
it may come with a significant penalty in practical feasibility
because it reduces flexibility regarding types of pairings and
curves and hinders the adaptation of new algorithms. In
theory, flexibility could be provided with reprogrammable
hardware but, in practice, it may be hard because pairings
are complicated algorithms and designing separate implemen-
tations for all pairing types and parameter sets would be a
daunting task. Hence, there is a clear need for flexible high-
performance implementations that can be used for efficiently
computing different cryptographic pairings. Typically, pairings
are only a part of a cryptosystem and also other operations
must be supported by an implementation in order to realize
the cryptosystem (e.g., identity-based encryption, searchable
encryption, or functional encryption schemes). Hence, an
implementation of pairings should be compact and achieve
a good speed-area tradeoff.

Hardware/Software (HW/SW) codesign paradigm is suitable
for pairing computations and their use in larger cryptosystems
because complicated control flows can be implemented in
software while still receiving the benefits of hardware ac-
celeration effectively with efficient yet compact accelerator
cores. This is particularly due to the fact that complicated
state machines required for controlling complex pairing com-
putations are easy and efficient to implement in software
whereas they incur significant area overheads in hardware.
A HW/SW codesign is also scalable in the sense that it can
be extended with additional cores for parallel pairings and/or
other operations needed by the cryptosystem. In this paper, we
will focus on programmable System-on-Chip (SoC) platforms
(e.g., Xilinx Zynq SoCs) that realize the HW/SW codesign
paradigm with hardwired processors (typically ARM cores)
and reprogrammable hardware (i.e., FPGAs).

To keep the discussion concise and clear, we focus particu-
larly on optimal ate pairings [16] over BN curves [17] and the
specific parameters used by Beuchat et al in [22]. Nevertheless,
we emphasize that the implementation is generic and can be
used for implementing various pairings on different curves.

In this paper, we provide the following contributions:
• We describe a compact programmable SoC architecture

for cryptographic pairings that achieves high performance
and very good speed-area tradeoff. The architecture is
optimized for the resources of modern reprogrammable
SoCs such as DSPs, BlockRAMs, and hard ARM cores.

Algorithm 1: Optimal ate pairing over BN curves.
Input: P ∈ G1 and Q ∈ G2.
Output: aopt(Q,P) = f , where f ∈ Fp12 .
Constant: s = 6t+ 2 =

∑L−1
i=0 si 2

i, where
si ∈ {−1, 0,+1}.

1 T ← Q, f ← 1
2 for i = L− 2 to 0 do
3 f ← f2 · lT,T (P); T ← 2T
4 if si 6= 0 then
5 f ← f · lT,siQ(P); T ← T + siQ

6 Q1 ← πp(Q); Q2 ← −πp2(Q)
7 f ← f · lT,Q1

(P); T ← T +Q1

8 f ← f · lT,Q2
(P); T ← T +Q2

9 f ← f (p
12−1)/r

10 return f

• The architecture supports microcode updates that can
be used for supporting different cryptographic pairing
algorithms, curves, and other parameters with the same
accelerator architecture. This makes our architecture sig-
nificantly more viable for practical deployment than hard-
ware implementations with fixed parameters.

• We evaluate the proposed HW/SW codesign system on
real hardware using Avnet Zedboard including a Xilinx
Zynq-7020 programmable SoC chip and showcase the
above-mentioned benefits.

The rest of this paper is organized as follows. We briefly
survey the relevant algorithmic background in Section II.
We present the architecture of our implementation and the
computation procedures in Section III followed by results and
analysis in Section IV. Finally, we end the paper by drawing
conclusions in Section V.

II. PRELIMINARIES OF PAIRING

A cryptographic pairing is a bilinear map G1 × G2 → G3

where G1 and G2 are additive groups and G3 is a multiplica-
tive group. In the context of optimal ate pairings on BN curves,
G1 and G2 are additive groups of points on elliptic curves
E(Fp) and E(Fpk) and G3 is the multiplicative group of Fpk .
The parameters must be chosen so that discrete logarithms in
all three groups are infeasible; e.g., for approximately 128-bit
security level, we need a 256-bit prime p and k = 12.

The algorithm for computing an optimal ate pairing over
BN curves is given in Alg. 1. The two main operations in
the algorithm are the Miller loop in lines 2–5 and the final
exponentiation in line 9. The former consists of elliptic curve
arithmetic in E(Fp2) and line evaluations in Fp12 that can be
interleaved. The latter is an exponentiation in Fp12 that can
be decomposed into f (p

6−1)(p2+1)(p4−p2+1)/r, of which the
two first terms can be efficiently computed with Frobenius
operators and conjugations. The last term is called the hard
part and is computationally the most demanding part.

We demonstrate our design for computing Alg. 1 by using
the subalgorithms from [22]. They used t = 262 − 254 + 244

that enables efficient computation of the Miller loop and the
hard part of the final exponentiation while providing 126-bit
security level. The primes p and r are as follows: p = 36t4 +
36t3 + 24t2 + 6t + 1 and r = 36t4 + 36t3 + 18t2 + 6t + 1.
In [22], Fp12 is represented as a tower extension field with the
following irreducible binomials:

Fp2 = Fp[u]/(u
2 − β),where β = −5 (1)

Fp6 = Fp2 [v]/(v3 − ξ),where ξ = u (2)

Fp12 = Fp6 [w]/(w2 − v). (3)

Consequently, arithmetic operations in the above fields are
computed with series of operations in Fp. In particular,
the Karatsuba-like construction allows multiplications in the
quadratic extension fields Fp2 and Fp12 to be computed
with three multiplications (and additions/subtractions) in the
underlying fields Fp and Fp6 , respectively. Multiplications in
Fp6 require six multiplications in Fp2 [22]. Lines 3, 5, 7, and 8
are computed using formulae from [18], [38]. Line 6 requires
only three multiplications and two negations in Fp. Line 9
follows the ideas of [39] and consists of multiple low-level
algorithms and optimizations.

III. ARCHITECTURE AND IMPLEMENTATION

In this section, we present our architecture for pairings
using the HW/SW codesign approach in a programmable SoC.
Most of the existing hardware-based pairing implementations
have focused on maximizing the speed at the expense of
resource utilization and programmability. The few flexible
designs that support different pairings and parameters are
significantly slower. The HW/SW codesign approach allows
an efficient tradeoff combining high performance with low
resource usage and flexibility. This is particularly true for
pairing computations where the main difficulty in this respect
is the high number of different algorithms that must be
supported but where computations mostly rely on the same
low-level operations (i.e., Fp arithmetic).

A. High-Level HW/SW Codesign

Our architecture is constructed as a generic HW/SW code-
sign and can be instantiated in various programmable SoCs
with minor modifications. However, in this paper, we consider
mainly instantiations in Xilinx all-programmable SoCs be-
cause we use Avnet ZedBoard and Xilinx ZCU102 evaluation
kits for prototyping. We will refer to the specific features
of those programmable SoCs whenever such a distinction is
required. Also, to provide programmability and to decrease
resource utilization, the HW part of our architecture uses a
microprogramming appraoch instead of implementing hard-
wired Finite State Machines (FSMs) for the specific algorithms
of pairing computations. Because microprogramming provides
flexibility, scalability, and programmability combined with a
small area footprint that would be hard to achieve with specific
FSMs in hardware.

Snoop Control unit

On-Chip
Memory

CPU(s)
(ARM Core(s))

Cache and Controller

Application Processor Unit

Programmable Logic to
Memory Interconnect

Memory Interface

DDR3
Controller

I/O
Peripherals

SW Side (Processing System)

IRQ

AXI DMA
Block

AXI Memory Interconnect

I/O

RD_CHNL

WR_CHNL

Command

Status

DDR3

I/O Data

Parameters

HW Side
(Programmable Logic)

High-Performance Ports

Memory

HPx

Microcodes Central
Interconnect

Reset

GPx

General-Purpose Ports
IRQs

Off-Chip
Memory

Pairing CP (PCP)
Control Unit

Arithmetic Unit
(Datapath)

Inst.-
MEM

Data-
MEM

AXI Peripheral
Interconnect

Gen.
Clock

Sub-routines

HW Computing IP-Core

GIC

AXI GPIO

AXI GPIO

Fig. 1. High level architecture of the HW/SW codesign for the pairing.

Fig. 1 illustrates the high-level architecture of the HW/SW
codesign which is divided into two main parts including
SW and HW sides (called Processing System (PS) and Pro-
grammable Logic (PL) in Xilinx terminology, respectively).
The SW side consists of ARM core(s), on-chip and off-
chip (i.e., DDR3) memories, and other interconnection and
control. The HW side consists of Pairing Cryptography Pro-
cessor (PCP) and supporting modules (i.e., Xilinx IP cores
including Direct Memory Access (DMA), memory and pe-
ripheral interconnects, General Purpose Input/Output (GPIO),
and processor system reset). The data and control commu-
nications between the SW and HW sides are based on the
capabilities of the specific programmable SoC, and we use the
Advanced Extensible Interface (AXI) High Performance (HP)
and General Purpose (GP) interfaces of Xilinx SoCs. The HP
interface is employed for high-performance transfer of data
and microcodes, and the GP interface is used for transferring
commands and status (see Fig. 1). The SW side is respon-
sible for controlling the HW side and external peripherals.
Specifically, the SW side performs the high-level control and
managing of the execution-flow of the pairing computation.
These operations include sending and receiving data and
microcode packets to/from the PCP, issuing commands to the
PCP, offline and online programming of the PCP (by the
microcodes) and other modules in the HW side, receiving
the status of the PCP and other modules from the HW side,
and making control decisions based on the received status. As
shown in Fig. 1, all modules in the HW side are connected
in an AXI-based structure. The high-performance data and
microcodes communication between the SW side and the PCP
of the HW side is done via the HPx interface that connects to
the AXI memory interconnect block which further connects

to the PCP core via an AXI DMA block. Furthermore, the
command and status communication is handled via the AXI
peripheral interconnect block in the HW side. It is also used
for controlling the AXI DMA block used for high-speed data
and microcodes communications.

B. Pairing Cryptography Processor (PCP)

The cost of a pairing computation is generally expressed by
the total number of required field operations (i.e., multipli-
cations, additions/subtractions, constant-multiplications, and
inversions). Moreover, the efficiencies of the architecture and
the scheduling technique of field operations are the main
factors that determine the overall performance of a pairing
implementation [37]. The main objective in designing the PCP
is to achieve a good trade-off between programmability, speed,
and area requirements and to efficiently utilize the resources
of modern FPGAs (e.g., DSPs and BRAMs) in implementing
base field arithmetic (i.e., arithmetic in Fp). Because the tower
extension field arithmetic is ultimately based on Fp arithmetic,
this allows us to efficiently implement different arithmetic
operations in Fp2 , Fp4 , Fp6 , and Fp12 (tower field arithmetic).

Fig. 2 depicts the architecture of the PCP, which contains
external interface, arithmetic (datapath), control, Data Mem-
ory (DMEM), and Instruction Memory (IMEM) units. The
external interface unit is used for command, status, data, and
microcode communication with the external modules. The
IMEM contains a 1024× 72-bit simple dual-port RAM and a
controller for different address branch scenarios. IMEM stores
microcodes for algorithm(s) that are run in the PCP. Each
instruction in the microcodes consists of several fields that
apply the required commands to the corresponding units for
a working cycle of the PCP. The IMEM is partitioned into

WR_D13

True Dual-Port
RAM

TDP_BRAM
(256Kb)

Out1

(1024×256bit)

True Dual-Port
RAM

TDP_BRAM
(256Kb)

(1024×256 bit)
Out2

Out3

Out4

In1

In2

In3

In4

WR_D24

In1_X

Ext.-IF DMEM

MMMB_u1

X Y

Zp'p

Register p

Out_u1 Out_u2 Out_u3 Out_u4

Out13 Out24

Arithmetic Unit (Datapath)

IMEM Address
Controller & FSMs

Simple Dual-
Port RAM

SDP_BRAM
(72Kb)

Microcode Fetching

(1024×72 bit)

Ext.-IF IMEM
(Instructions loading IF) IMEM Unit

DMEM Read /Write
Address (RD/WR_Axx)

Generation

Constant Value Registers

Address Index Registers

Loop Counter Registers

Register Bank

Controller
and FSMs

PCP Instruction SetMSB LSB

Two stage pipelined for p addition and subtraction
X Y

Z

p

Adder/Subtractor (+ /) Block

add/sub

Selector
Logic

Adder/Subtractor (+ /) Block

MASB

In1_Y In2_X

MMMB_u2

X Y

Zp'p

In2_Y In3_X

MMMB_u3

X Y

Zp'p

In3_Y

In4_X

MASB_u4
X Y

Zp

In4_Y

Arith. and Ctrl. Signals

Y

Z

p
X

Command
Status

AXI_RD_IF
AXI_WR_IF

External Interface Unit
(IF_Logics, RAM, and FSMs)

Ext.-IF DMEM

WE13/24

Register p'

Fig. 2. Architecture details of the PCP core including external interface, DMEM, datapath, IMEM, and control units. Structure of the MASB is described.

X

Z

p'

xi

Y

yi

p

pi

a b c d

rhigh rlow

Lower Central Multiplexing Block
...

...

Multiply-Add-Add Accumulator

...
...

Upper Central Multiplexing Block

Start Done_1 Done_2

Register
Bank

Data 64-bit

Control

a

shigh
slow

Multiply-Add-Add Block
MAAB: (a×b+c+d)

b c dData 256-bit

(Five-Stage Pipeline)

Karatsuba Multiplier and
Adders Combination

s

1

Cin

0
1

Adder (+)1

Cout

128

0
64

rhigh rlowLatency of rlow =5
Latency of rhigh=6

1

Block (MAAAB)

R i R j RR c

+

Fig. 3. Architecture details of the MMMB.

32 segments (i.e., 32× 2.25Kb = 72Kb), where each segment
can be loaded separately via the external interface unit during
the runtime. In addition, full microcode loading of the IMEM
can be done by the SW side directly during the runtime.

The control unit generates addresses for DMEM and makes
decisions for loop iterations and conditional statements. The
inputs and outputs of the arithmetic unit are connected to
DMEM, which stores data that is required during an algorithm
run. DMEM is a duplicated 1024×256-bit true dual-port RAM
with two independent read and write ports and supports “4-
read”, “2-write”, or “2-read and 1-write” operations from/to
DMEM. This facilitates efficient scheduling and parallelization
of Fp arithmetic. DMEM is also interfaced with the external
interface unit for communicating data with the SW side.

1) Arithmetic Unit: The datapath is shown in the top
right corner of Fig. 2 and it supports arithmetic in Fp with
arbitrary up to 256-bit primes p (i.e., up to 128-bit security).
It consists of three parts: source registers, arithmetic blocks,
and output selectors. The arithmetic blocks comprise three
Montgomery Modular Multiplier Blocks (MMMBs) and two
Modular Adder/Subtractor Blocks (MASBs) and they can op-
erate in parallel and independently of each other. The inputs of
all arithmetic blocks can be loaded from DMEM but the inputs
of MASBs can be additionally loaded from the outputs of the
arithmetic blocks. This arrangement together with the multi-
read/write feature of DMEM allows efficient computation
of tower extension field arithmetic. E.g., Fp2 multiplication
requires three Fp multiplications, which can be computed as
follows: [(a0 × b0), (a1 × b1), ((a0 + a1) × (b0 + b1))] ≡
[(Out1×Out2), (Out3×Out4), ((Out1+Out3)×(Out2+Out4))].
The modulus p and the precomputed Montgomery constant p′

are registered into the arithmetic unit.
a) MASB: The structure of MASB with a two-stage

pipeline is also illustrated in Fig. 2. Addition and subtraction in
Fp can be realized by two consecutive adder/subtractor circuits
which produce the result in two cycles. Due to the pipeline, its
throughput is one Fp addition/subtraction per cycle. Applying
two MASBs and connecting the outputs of the datapath back to
its inputs facilitates efficient field arithmetic operations such as
Fp2 addition/subtraction/negation, Fp2 multiplication/squaring,
and multiplications by small constants.

b) MMMB: Fig. 3 shows the structure details of MMMB
for computing Fp multiplications/squarings. It contains three
nested parts which are organized bottom-up as a Multiply-

Curves and Groups
Parameters, etc.

Variables, Constants,
Parameters, etc.

Input /Output Data

Data Memory (DMEM)

Curve Parameters
Variables & Constants

Initialization and Pre-
Computed Parameters

D1 (256-bit)

D2

Dmax

Instruction
Memory (IMEM)

Parameters Setting

Sub-Routines, etc.

2Kb IMEM and 256Kb
DMEM Located to PCP

HW SideSW Side

On/Off-Chip SW-Side
Memories (512MB)

Segment and Full
Microcode Packs

Master Slave

High-Performance Interface for Data
and Microcode Packs Transfers

Command (32-bit)

PCP_Init /Config
PCP_Run
PCP_IMEM_S_Load
PCP_IMEM_F_Load
PCP_DMEM_WR
PCP_DMEM_RD

1Kb RAM Located to

PCP_Idle
PCP_Ready
PCP_Busy

PCP_Wait_S/F
PCP_Done_1/2/3

Auxiliary RAM
Segment Pack_1

Segment Pack_2

Segment Pack_16

External Interface Unit

HP Interface

HP-IF

Opcode
Destination

SourceIndex
ID

PCP Instruction Set

Addr1

Format (72-bit)

HP-IFAddr2

Addr3

Ctrl.

DMEM IMEM

Addr4 Arith.

Condition

Addr_IMEM

pcp_sys

Fig. 4. Memory taxonomy details of the SW and HW sides, SW/HW interaction principles, and PCP instruction set format of the HW/SW codesign system.

Add-Add Block (MAAB), a Multiply-Add-Add-Accumulator
Block (MAAAB), and the overall structure of MMMB. MAAB
is the primary computation block in the datapath and consists
of a 64× 64 bit Karatsuba multiplier (constructed from three
parallel 32 × 32 bit multipliers) combined with adders to
compute a × b + c + d (all 64-bit values) in a five-stage
pipeline. MAAB consumes most of the FPGA resources, has
the highest dynamic power consumption, and also contains
the critical path of PCP. In order to maximize its efficiency,
it is implemented using the DSP slices. In the next part,
MAAB is complemented with an accumulation operation (i.e.,
MAAAB). The lower part of the MAAB result is accumulated
with the previous higher part as well as with the previous
most significant bit of the accumulation result (i.e., the input
carry). The output carry and the higher part of the MAAB
result are stored for the next accumulation (see Fig. 3). The
latencies for computing rlow and rhigh are five and six clock
cycles, respectively. This accumulation method and the one
clock cycle difference between rlow and rhigh are essential for
efficient implementation of high-radix Montgomery modular
multiplication algorithm [40]. Finally, in the top part, MAAAB
(as the main computing core) as well as multiplexers, registers,
and FSMs are used for implementing radix-264 Montgomery
modular multiplication [40]. MMMB computes a multiplica-
tion/squaring in Fp with a total latency of 43 clock cycles, but
a new multiplication/squaring can be started already after 38
clock cycles due to the pipelined scheme.

C. Pairing Computations with the HW/SW Codesign

1) Working Principle and Scheduling of the Architecture:
The initialization step configures both the SW and HW sides
of the HW/SW codesign and must be done only once for every
pairing algorithm and curve parameter set. It includes loading
all inputs and curve parameters into DMEM of the PCP core in
the HW side. To implement a specific pairing algorithm, an in-
depth analysis of the algorithm is performed and all algorithms
of the pairing are translated into microcodes (i.e., several
segments and/or full sub-routine packs). The microcodes are
sequences of instructions for different units of the PCP core.
Each instruction set consists of fields such as arithmetic,

control, next IMEM address, DMEM address values, DMEM,
and IMEM fields. These fields apply all required controlling
signals for the units for a working cycle of the PCP core.
The microcodes are generated by hand through a customized
platform and scripts. In this architecture, each instruction set
has 72-bit length and it is divided to 14 fields. The microcodes
are stored in the (off/on-chip) SW side memory (i.e., DRR3).
Whenever a (set of) particular computation(s) needs to be
executed in PCP, then the corresponding microcode(s) are
loaded into IMEM by SW side through the external interface
unit, as explained before. According to the aforementioned
explanations, details of the memory taxonomy in the SW
and HW sides, SW/HW interaction principles, and the PCP
instruction set format are described in Fig. 4. Obviously, the
efficiency of microcodes for computing tower extension field
arithmetic greatly determines the overall performance of a
pairing computation and, therefore, special care should be
taken in scheduling operations and maximizing the utilization
of the datapath for these operations.

Fig. 5 illustrates how to efficiently implement and sched-
ule the tower extension field arithmetic (from Fp to Fp12)
on the BN126 curve [22], which is the main focus of this
paper. On the top, it shows how to maximize the usage and
scheduling of the datapath for Fp arithmetic (i.e., multiplica-
tions/squarings, additions/subtractions) by utilizing parallelism
and pipelining. The datapath effectively hides the costs of
additions/substractions as they can be computed simultane-
ously with multiplications and this can be utilized for efficient
computation of tower field arithmetic. In the middle, Fig. 5
depicts the realization of Fp2 arithmetic using Fp arithmetic
and shows that a new Fp2 multiplication/squaring can be
computed after 38 clock cycles and, also, that up to eleven
Fp2 additions/subtractions can be done during each Fp2 mul-
tiplication/squaring. The Fp and Fp2 operations are further
used for implementing Fp4 , Fp6 , and Fp12 arithmetic (addition,
subtraction, negation, constant-multiplication, multiplication,
squaring, exponentiation, and inversion).

2) Optimal Ate Pairing Computation Steps: Implementa-
tion of optimal ate pairing algorithm (Alg. 1) in our HW/SW
codesign consists of three levels. The first level are the im-

..

..

..

..

..

..

..

..

..

Arithmetic

Arithmetic

Arithmetic

Arithmetic

Arithmetic

Tower Extension
Field Arithmetic

Hierarchy [12]

Clock Cycle

2 parallel &pipelined MASBs compute
2 add./sub. in parallel and pipeline

Pipelined mult./squr.

Up to 11 pipelined add./sub. during each mult. /squr.

+ 5 + 38 + 43 + 48 + 54 + 76 + 81 + 86 + 92 + 114 + 119 + 124 + 130

Done_1 of MMMB (p Mult./Squr.) actives after 38 clock cycles
Done_2 of MMMB (p Mult./Squr.) actives after 43 clock cycles

: Start point of the diagram; and start of the first and second MMMBs + 5: Start of the third MMMB unit operation
+ 38: Done_1 of the first and second MMMBs and start of them + 43: Done_2 of the first and second MMMBs; Done_1 of the third MMMB and start of that for the next operation
+ 48: Done_2 of the third MMMB + 54: End of the first 2 mult./squr. operation

Timing principles of field arithmetic:

Calculating inputs of the third MMMB for 2

mult./squr. based on the Karatsuba method

[... +130]

Mult. /Squr.

Add. /Sub.
Mult. /Squr.

Add. /Sub.

..

3 parallel & pipelined MMMBs compute
3 mult./squr. in parallel and pipeline
(based on the Done_1&Done_2 signals)

Fig. 5. Timing diagram of the tower extension field arithmetic operations (i.e., Fp, Fp2 , Fp4 , Fp6 , and Fp12 arithmetic).

plementations of Fp and Fp2 arithmetic discussed above. The
second level consists of elliptic curve doubling/addition steps,
line evaluation functions, Frobenius operators, and Fp12 arith-
metic operations, which utilize the optimized and interleaved
algorithms as well as tower extension field arithmetic hierar-
chy. Finally, the third level controls the high-level operations of
Alg. 1, which are Miller loop (lines 2–5), Frobenius operators
and final addition steps (lines 6–8), and final exponentiation
(line 9). They are efficiently realized on the HW/SW codesign
by using the algorithms from [22].

In the final exponentiation, an Fp12 inversion is required.
Thanks to the tower extension field arithmetic, it can be de-
composed into several additions/subtractions, multiplications,
squarings, and a single inversion in Fp, which dominates the
computational cost. We compute the inversion in Fp with
Fermat’s Little Theorem that gives a−1 ≡ ap−2 mod p. We
compute this exponentiation using the right-to-left square-and-
multiply algorithm because it allows computing multiplica-
tions in parallel with squarings and results in more efficient
implementation. Because the cost of multiplications is hidden,
an inversion costs only blog2 p− 1c squarings.

All operations are implemented as different full and segment
microcode packs. The entire implementation of Alg. 1 contains
8 full and 24 segment packs. Miller loop, Frobenius operators
and final addition steps, and final exponentiation consist of
1/12, 1/2, and 6/10 full/segment packs, respectively. Alg. 1 is
executed in the HW/SW codesign so that, first, all microcode
packs are stored in the SW side memory (i.e., DDR3). Then,
for executing a specific computation step, the related full
pack is loaded directly to IMEM. Then, the related segment
packs are stored into the Auxiliary RAM block of the external
interface unit (which can hold up to 16 segment packs).
Whenever these segment packs are needed, they are loaded

to the IMEM by the external interface unit. Loading of the
full packs is done by the SW side, but the segment packs are
loaded internally by the HW side without interaction with the
SW side (see Fig. 4). The details about latencies of full and
segment microcode packs transfers are reported and analyzed
in the next section. It should be noted that the latencies of
preparing and sending/receiving each command/status in the
SW and HW sides are 45 and 5 clock cycles, respectively,
which are small compared to the computation latencies in
the PCP core. Furthermore, after initializing the PCP core,
we need 26 commands and status transfers in total for an
optimal ate pairing computation. The required clock cycles for
transferring the full and segment microcode packs, commands,
and statuses between the SW and HW sides are included in
the reported times in the next section (i.e., Section IV).

Alg. 1 contains 8 parts (and as many full packs). Miller
loop (lines 2–5) and lines 6–8 are the two first parts. The
final exponentiation (line 9) divides into 6 consecutive parts,
which are computed following the procedure in [39] and
the specific algorithms from [22]. Alg. 1 over the BN126

curve with the parameters from [22] needs, in total, 14300
multiplications/squarings in Fp and only one inversion in Fp.

IV. RESULTS AND ANALYSIS

A. Implementation Setup and Results

To evaluate the performance of the HW/SW codesign, we
implemented it on real hardware using Avnet Zedboard with
a low-cost Xilinx Zynq-7020. The target chip includes a dual-
core ARM Cortex A9 and an Artix-7 FPGA. For the SW
side, we used C++ and Xilinx software development kit for
developing software for a real-time operating system (RTOS).
For the HW side, we used Verilog (HDL) and Vivado for im-
plementing the design to the FPGA. The resource requirements

TABLE I
RESOURCE USAGE OF THE HW SIDE IN ZYNQ-7020 SOC PROTOTYPE

Component LUTs REGs SLICEs DSPs BRAMs
PCP IP-Core

PCP core 8516
(16.0%)

9641
(9.1%)

3178
(23.9%)

36
(16.4%)

17
(12.1%)

MASB 460 474 180 0 0
MMMB 1941 2292 822 12 0

Ext. Interface 68 45 21 0 1
Xilinx IP-Cores
Mem. Intercon. 1205 1329 453 0 0
Prph. Intercon. 537 694 249 0 0
AXI DMA 2118 3490 915 0 3
AXI GPIOs 110 308 97 0 0
Processor reset 17 18 11 0 0

Total Usage 12571
(23.6%)

15480
(14.5%)

4924
(37.0%)

36
(16.4%)

21
(15.0%)

are summarized in Table I. The maximum clock frequencies
for the FPGA and ARM are 105 and 667 MHz, respectively.
Based on Vivado, the total power consumption of the chip
is about 1.9W. All results are final post-place&route results
and validated with real hardware, unless mentioned otherwise.
Table II gives the number of clock cycles to compute different
parts of Alg. 1 over the BN126 curve from [22] in the FPGA.

To demonstrate the generality of our HW/SW codesign and
its efficiency on a modern programmable SoC, we imple-
mented it on a Xilinx Zynq UltraScale+ MPSoC ZU9EG chip
featuring a quad-core ARM Cortex-A53 processor running up
to 1.5GHz in the SW side and a 16nm FinFET+ based FPGA
in the HW side. Such a programmable SoC platform allows a
significantly more powerful instance of our HW/SW codesign
to be implemented in a single chip. Furthermore, to enable
fair comparisons with other pairing designs, we implemented
the HW side of the SoC architecture on a Xilinx Virtex-6
FPGA device. Table III reports the performance characteristics
of implementation in the three above mentioned platforms. It
should be noted that the results are for optimal ate pairing
implementation over BN126 curve.

B. Related Work, Comparison, and Discussion

In this section, we consider three main categories of the
pairings implementations including FPGA (and SoC), ASIC,
and pure SW implementations. Also, there are many FPGA,
ASIC, and SW implementations of different pairing algorithms
over various curves and parameters but, for the sake of brevity,
we cite only those for optimal ate pairings over BN curves
that are relevant for comparisons with our implementations.
Table IV shows a comparative analysis of hardware and
software results of optimal ate pairings over BN curves with
126–128-bit security levels.

In the first part of Table IV for the FPGA implementations,
our Virtex-6 FPGA design, which occupies only 3072 slices,
36 DSPs, and 18 BRAMs, compares favorably to other designs
in respect to flexibility, scalability, programmability, and area
and still offers comparable speed. Furthermore, only [36] and
[41] are flexible but they are considerably slower. Flexibility

is very important for HW implementations because otherwise
a different HW component is needed for different pairings and
parameters.

In the second part of Table IV, [28] and [26] have focused
on the inflexible and customized ASIC implementations of
pairing cryptographic processors. Also, [28] achieved high-
speed pairing implementation in the expense of using a large
area footprint. In addition, [30] proposes designing of a flex-
ible and programmable ASIP for cryptographic pairings over
BN curves in the ASIC platform but it is considerably slower.
In order to compare flexibility and programmability of our
HW/SW codesign with the ASIP implementation approach, we
mention that our design is fundamentally a HW/SW codesign
because we need the SW side, e.g., for scheduling data and
packs transfers from the main memory. This allowed us to use
a compact PCP core in the HW side but also provides more
flexibility than ASIP approach. Of course, it would be possible
to remove the SW side by extending the existing PCP core
with more complex control logic (e.g., for scheduling data
transfers from the main memory) similarly to an ASIP-like
approach, but this would make the PCP more complex and
less flexible/programmable.

Finally, in the third part of Table IV, there are SW im-
plementations of pairings with higher speed than our flexible
and programmable Hardware (HW) (i.e., FPGA) design. SW
is also always flexible and programmable by nature. How-
ever, HW has many advantages besides pure speed: such as
energy/op and price/core. E.g., as reported before, based on
Vivado, our Zynq-7020 design consumes 1.9W whereas high-
performance CPUs consume a few hundreds of Watts under
full load. Comparing our PCP core and high-performance
CPUs is not entirely fair because the PCP is optimized for
speed/area. Besides, a single FPGA (even Zynq-7020) can
have parallel PCPs to further increase the speed. Moreover,
HW implementation (e.g. FPGA) is also usually easier to
protect against side-channel attacks than pure SW implemen-
tation. Also, in the three parts of Table IV, there are some
works that are faster but not flexible/programmable.

C. Computational Costs of Different Pairing Algorithms

It is common and effective to analyze computational costs of
pairing algorithms by expressing the costs of different parts of
algorithms with the numbers of Fp and/or Fp2 arithmetic oper-
ations. As explained before, the costs of additions/subtractions
are hidden in our datapath. Furthermore, Fp2 multiplication
and squaring have the same cost due to the pipeline scheme
(see Fig. 5). Hence, we can estimate the costs of different
steps using only the numbers of Fp2 multiplications/squarings.
Because each Fp2 multiplication/squaring contains three par-
allel Fp multiplications/squarings (in our datapath) and the
design computes an Fp2 multiplication/squaring with a latency
LM = 38, we estimate that the total number of clock cycles
of a pairing algorithm in our HW/SW codesign is as follows:

T = dC × (dMp / 3e × LM + Ip × LI) e, (4)

TABLE II
CYCLE COUNTS OF THE HW SIDE (FPGA) FOR DIFFERENT STEPS OF OPTIMAL ATE PAIRING ALGORITHM (ALG. 1 ON BN126 CURVE)

SW/HW Miller Loop (Lines 2–5), and Final Add. (Lines 7–8) Line 6 Final Exponentiation (Line 9)
IMEM

LD-S/F †
Sqr: f2
∈Fp12

2T ,
lT,T (P)

T +Q,
lT,Q(P)

Mult: f ·
lT,X(P)

Miller-
Loop ‡

πp(Q),
πp2 (Q)

a−1 ∈
Fp/Fp12

f t ∈Fp12/
Gφ6

(Fp2)
Frob:fp

i

∈ Fp12
f · g
∈Fp12

Final
Exp. ‡

Cycle
Count

46 /
1,344 475 502 619 513 101,286 86 11,938 /

13,511
34,599 /
22,707 160 703 103,064

† Loading a Segment or Full microcode pack (2.25 or 72 Kbit) into IMEM (IMEM LD-S/F).
‡ Cycle counts of IMEM LD-S/F operations are considered.

TABLE III
PERFORMANCE CHARACTERISTICS OF THE PROGRAMMABLE HW/SW CODESIGN SYSTEM IN DIFFERENT PLATFORMS FOR PAIRING IMPLEMENTATION

Design Platform
(SoC / FPGA Device)

SW↔HW
Interface

of IMEM
S/F Packs†

PCP Core in HW Side (FPGA Side) SW Side (ARM Core) Time†

(ms)Freq.max Slices DSPs BRAMs # Cycles† Freq.max # Cycles†

Zynq-7000 SoC
(xc7z020clg484-1)

64 bit /
AXI HP0 S: 24 / F: 8 105 MHz 3199 Slices‡

(24.0%)
36

(16.4%)
18

(12.8%) 208,146 667 MHz 132,066 2.180

Virtex-6 FPGA
(xc6vlx240tff1759-3)

64 bit /
HW Config S: 24 / F: 8 156 MHz 3072 Slices‡

(8.2%)
36

(4.7%)
18

(4.3%) 208,146 — — 1.334*

Zynq UltraScale+ SoC
(xczu9eg-ffvb1156-2-e)

128 bit /
AXI HP0 S: 24 / F: 8 230 MHz 1873 CLBs§

(5.5%)
36

(1.4%)
18

(2.0%) 202,098 1,200 MHz 87,465 0.952

† For implementing optimal ate pairing over BN126 curve. ‡ Each slice consists of four LUTs and eight flip-flops. § Each CLB contains one slice and
each slice provides eight LUTs and sixteen flip-flops. * Total computation time of the PCP core in the HW (FPGA) side without SW side time overhead.

TABLE IV
PERFORMANCE COMPARISON OF HW AND SW IMPLEMENTATIONS OF
OPTIMAL ATE PAIRING OVER BN CURVES (126-128 BIT SECURITY)

Ref. Platform Flex Area (Slice /
DSP / BRAM)

Fmax
(MHz)

Cycle
×103

Time
(ms)

Ours Virtex-6 Yes 3072 / 36 / 18 156 208 1.33
[37] Virtex-6 No 5163 / 144 / 21 166 62 0.38
[25] Virtex-6 No 7032 / 32 / 22 250 143 0.57
[27] Virtex-6 No 4014 / 42 / 5 210 245 1.17
[36] Virtex-4 Yes 52K / – / – 50 821 16.4
[32] Virtex-6 No 9476 / – / – 145 80 0.56
[24] Virtex-6 No 17560 / 11 / – 225 407 1.80
[42] Virtex-6 No 45K / 128 / – 103 395 3.83
[34] Virtex-6 No 7032 / 32 / 48 250 166 0.66
[35] Virtex-6 No 5237 / 64 / 41 210 78 0.34
[33] Virtex-6 No 5570 / 30 / – 225 80 0.35
[29] Virtex-6 No 4380 / 131 / – 125 283 2.26
[41] Zynq 7020 Yes 598 / – / – 324 — 134
[28] ASIC No 323K Gates 633 330 0.52
[26] ASIC No 183K Gates 204 593 2.91
[30] ASIC Yes 97K Gates 338 5,340 15.8
[22] Core i7 Yes — 2,800 2,330 0.83
[19] Phenom II Yes — 3,000 1,562 0.52

[21] Opteron II Yes — 2,400 1,500 0.62
ARM A15 Yes — 1,700 6,089 3.58

where Mp and Ip are the numbers of multiplications and
inversions in Fp, LI is the latency of an inversion in Fp, and
C is the overhead of loading microcode packs. Based on our
experiments, C ≈ 1.1. For the optimal ate pairing from [22]
considered in this paper, we have Mp = 14300, Ip = 1, and
LI = 11938 and (4) gives T = 212393. The measurements
from real hardware show that real number is 208146 clock
cycles and, hence, the estimate given by (4) has an error of
about 2 %. Table V collects estimates of computational costs
of different pairing algorithms in our HW/SW codesign by
using (4) and the Fp operation counts available in [30].

TABLE V
COMPUTATIONAL COSTS AND CALCULATION TIME OF VARIOUS PAIRING

ALGORITHMS ON BN CURVES (FROM [30]) AND OVER BN128 CURVE

Pairing over
BN128 curve

Mult.
∈ Fp

Add/Sub.
∈ Fp

Inv.
∈ Fp

FPGA
Cycles

Time†

(ms)
Opt. ate pairing 17,913 84,956 3 288,984 1.852
Ate pairing 25,870 121,168 2 386,747 2.479
η pairing 32,155 142,772 2 474,318 3.040
Tate pairing 39,764 174,974 2 580,323 3.720
Compressed η 75,568 155,234 0 1,052,942 6.750
Compressed Tate 94,693 193,496 0 1,319,417 8.458

† Total computation time is estimated based on the required FPGA cycle
counts in Xilinx Virtex-6 FPGA device.

V. CONCLUSIONS

We presented a new HW/SW codesign for efficient compu-
tation of cryptographic pairing algorithms. It combines com-
pact size, programmability, scalability, and flexibility (support
for various pairing algorithms and curves) with relatively high
performance. The architecture is optimized for the resources
of modern reprogrammable SoCs such as DSPs, BlockRAMs,
and hard ARM cores. In addition, the proposed SoC archi-
tecture supports microcode updates that can be used for sup-
porting different cryptographic pairing algorithms, curves, and
other parameters with the same accelerator architecture. We
evaluated the proposed HW/SW codesign with real hardware
and showed that the architecture can support different pairings
via microcode updates and can be implemented on other
reprogrammable platforms. We also investigated its efficiency
in a high-end Xilinx UltraScale+ programmable SoC platform.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 780108 (FENTEC).

REFERENCES

[1] A. J. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic
curve logarithms to logarithms in a finite field,” IEEE Transactions on
information Theory, vol. 39, no. 5, pp. 1639–1646, 1993.

[2] A. Joux, “A one round protocol for tripartite Diffie–Hellman,” Journal
of Cryptology, vol. 17, no. 4, pp. 263–276, 2004.

[3] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Advances in Cryptology — CRYPTO 2001, ser. LNCS, vol.
2139. Springer, 2001, pp. 213–229.

[4] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology — ASIACRYPT 2001, ser. LNCS,
vol. 2248. Springer, 2001, pp. 514–532.

[5] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security
(CCS’06). ACM, 2006, pp. 89–98.

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy (S&P’07). IEEE, 2007, pp. 321–334.

[7] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange,
J. Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable encryp-
tion revisited: Consistency properties, relation to anonymous IBE, and
extensions,” in Advances in Cryptology — CRYPTO 2005, ser. LNCS,
vol. 3621. Springer, 2005, pp. 205–222.

[8] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay, “Practical func-
tional encryption for quadratic functions with applications to predicate
encryption,” in Advances in Cryptology — CRYPTO 2017, ser. LNCS,
vol. 10401. Springer, 2017, pp. 67–98.

[9] M. Abdalla, R. Gay, M. Raykova, and H. Wee, “Multi-input inner-
product functional encryption from pairings,” in Advances in Cryptology
— EUROCRYPT 2017, ser. LNCS, vol. 10210. Springer, 2017, pp.
601–626.

[10] V. S. Miller, “The Weil pairing, and its efficient calculation,” Journal of
Cryptology, vol. 17, no. 4, pp. 235–261, 2004.

[11] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
algorithms for pairing-based cryptosystems,” in Advances in Cryptology
— CRYPTO 2002, ser. LNCS, vol. 2442. Springer, 2002, pp. 354–369.

[12] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate
pairing,” in Proceedings of Algorithmic Number Theory Symposium
(ANTS 2002), ser. LNCS, vol. 2369. Springer, 2002, pp. 324–337.

[13] P. S. L. M. Barreto, S. D. Galbraith, C. Ó’hÉigeartaigh, and M. Scott,
“Efficient pairing computation on supersingular abelian varieties,” De-
signs, Codes and Cryptography, vol. 42, no. 3, pp. 239–271, 2007.

[14] F. Hess, N. P. Smart, and F. Vercauteren, “The eta pairing revisited,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4595–
4602, 2006.

[15] E. Lee, H.-S. Lee, and C.-M. Park, “Efficient and generalized pairing
computation on abelian varieties,” IEEE Transactions on Information
Theory, vol. 55, no. 4, pp. 1793–1803, 2009.

[16] F. Vercauteren, “Optimal pairings,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 455–461, 2009.

[17] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” in Selected Areas in Cryptography — SAC 2005, ser.
LNCS, vol. 3897. Springer, 2005, pp. 319–331.

[18] M. Naehrig, R. Niederhagen, and P. Schwabe, “New software speed
records for cryptographic pairings,” in Progress in Cryptology — LAT-
INCRYPT 2010, ser. LNCS, vol. 6212. Springer, 2010, pp. 109–123.

[19] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López,
“Faster explicit formulas for computing pairings over ordinary curves,”
in Advances in Cryptology — EUROCRYPT 2011, ser. LNCS, vol. 6632.
Springer, 2011, pp. 48–68.

[20] D. F. Aranha, P. S. Barreto, P. Longa, and J. E. Ricardini, “The realm
of the pairings,” in Selected Areas in Cryptography — SAC 2013, ser.
LNCS, vol. 8282. Springer, 2013, pp. 3–25.

[21] R. Azarderakhsh, D. Fishbein, G. Grewal, S. Hu, D. Jao, P. Longa, and
R. Verma, “Fast software implementations of bilinear pairings,” IEEE
Transactions on Dependable and Secure Computing, vol. 14, no. 6, pp.
605–619, 2015.

[22] J.-L. Beuchat, J. E. González-Dı́az, S. Mitsunari, E. Okamoto,
F. Rodrı́guez-Henrı́quez, and T. Teruya, “High-speed software imple-
mentation of the optimal ate pairing over Barreto–Naehrig curves,” in
Pairing-Based Cryptography — Pairing 2010, ser. LNCS, vol. 6487.
Springer, 2010, pp. 21–39, full version: https://eprint.iacr.org/2010/354.

[23] H. Awano and M. Ikeda, “Asic coprocessor for 254-bit prime-field
pairing based on general purpose arithmetic unit on quadratic extension
field,” in 2018 International Conference on Advanced Technologies for
Communications (ATC). IEEE, 2018, pp. 387–392.

[24] R. Brinci, W. Khmiri, M. Mbarek, A. B. Rabâa, and A. Bouallègue,
“Efficient hardware design for computing pairings using few FPGA in-
built DSPs,” 2015, https://eprint.iacr.org/2015/116.

[25] R. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and
G. X. Yao, “FPGA implementation of pairings using residue number
system and lazy reduction,” in Cryptographic Hardware and Embedded
Systems — CHES 2011, ser. LNCS, vol. 6917. Springer, 2011, pp.
421–441.

[26] J. Fan, F. Vercauteren, and I. Verbauwhede, “Faster Fp-arithmetic for
cryptographic pairings on Barreto-Naehrig curves,” in Cryptographic
Hardware and Embedded Systems — CHES 2009, ser. LNCS, vol. 5747.
Springer, 2009, pp. 240–253.

[27] ——, “Efficient hardware implementation of fp-arithmetic for pairing-
friendly curves,” IEEE Transactions on Computers, vol. 61, no. 5, pp.
676–685, 2011.

[28] J. Han, Y. Li, Z. Yu, and X. Zeng, “A 65 nm cryptographic processor
for high speed pairing computation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 4, pp. 692–701, 2014.

[29] Z. Hao, W. Guo, J. Wei, and D. Sun, “Dual processing engine architec-
ture to speed up optimal ate pairing on FPGA platform,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 584–589.

[30] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langen-
berg, D. Auras, G. Ascheid, and R. Mathar, “Designing an ASIP for
cryptographic pairings over Barreto-Naehrig curves,” in Cryptographic
Hardware and Embedded Systems — CHES 2009, ser. LNCS, vol. 5747.
Springer, 2009, pp. 254–271.

[31] J. Sakamoto, Y. Nagahama, D. Fujimoto, Y. Okuaki, and T. Mat-
sumoto, “Low-latency pairing processor architecture using fully-unrolled
quotient pipelining montgomery multiplier,” in 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE, 2019,
pp. 1–6.

[32] A. Sghaier, L. Ghammam, M. Zeghid, S. Duquesne, and M. Machhout,
“Area-efficient hardware implementation of the optimal ate pairing over
BN curves,” 2015, https://eprint.iacr.org/2015/1100.

[33] A. Sghaier, M. Zeghid, L. Ghammam, S. Duquesne, M. Machhout,
and H. Y. Ahmed, “High speed and efficient area optimal ate pairing
processor implementation over BN and BLS12 curves on FPGA,”
Microprocessors and Microsystems, vol. 61, pp. 227–241, 2018.

[34] G. X. Yao, J. Fan, R. C. Cheung, and I. Verbauwhede, “A high speed
pairing coprocessor using RNS and lazy reduction,” 2011, https://eprint.
iacr.org/2011/258.

[35] ——, “Faster pairing coprocessor architecture,” in Pairing-Based Cryp-
tography — Pairing 2012, ser. LNCS, vol. 7708. Springer, 2012, pp.
160–176.

[36] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “High speed
flexible pairing cryptoprocessor on FPGA platform,” in Pairing-Based
Cryptography — Pairing 2010, ser. LNCS, vol. 6487. Springer, 2010,
pp. 450–466.

[37] S. Ghosh, I. Verbauwhede, and D. Roychowdhury, “Core based architec-
ture to speed up optimal ate pairing on fpga platform,” in International
Conference on Pairing-Based Cryptography, ser. LNCS, vol. 7708.
Springer, 2012, pp. 141–159.

[38] C. Arene, T. Lange, M. Naehrig, and C. Ritzenthaler, “Faster compu-
tation of the Tate pairing,” Journal of Number Theory, vol. 131, no. 5,
pp. 842–857, 2011.

[39] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and
E. J. Kachisa, “On the final exponentiation for calculating pairings
on ordinary elliptic curves,” in Pairing-Based Cryptography — Pairing
2009, ser. LNCS, vol. 5671. Springer, 2009, pp. 78–88.

[40] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” in Proceedings of the 12th Symposium on Computer
Arithmetic (ARITH). IEEE, 1995, pp. 193–199.

[41] A. Salman, W. Diehl, and J.-P. Kaps, “A light-weight hardware/software
co-design for pairing-based cryptography with low power and energy
consumption,” in 2017 International Conference on Field Programmable
Technology (ICFPT). IEEE, 2017, pp. 235–238.

[42] A. T. Wang, B. W. Guo, and C. J. Wei, “Highly-parallel hardware
implementation of optimal ate pairing over Barreto-Naehrig curves,”
Integration, vol. 64, pp. 13–21, 2019.

