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Executive Summary

Most of the existing functional encryption schemes in use today are based on the presumed hard-
ness of the discrete-log and the integer-factorization problems, which are known to be insecure
with respect to quantum computers [23]. To prevent the collapse of the cryptographic protocols
relying on these schemes, it is important to develop alternative solutions based on mathematical
problems that are unrelated to factoring and discrete log and that may be impervious to attacks
by quantum computers. Hence, one of the main goals of WP4 is to design quantum-safe func-
tional encryption alternatives that use lattices as their source of computational hardness. In this
deliverable, we describe our progress towards this goal.

More precisely, we describe a new multi-input functional encryption construction for the inner-
product functionality developed by Abdalla et al. [3] in the context of the FENTEC project, which
was the first such scheme based on lattice problems. Since their construction is generic and can be
based on any single-input functional inner-product encryption satisfying some common structural
properties, we describe two possible lattice instantiations based on the problem of Learning With
Errors (LWE). In addition to being quantum-safe, another advantage of these schemes is that
they also allow for the computation of inner products of arbitrary sizes.
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1 Introduction

Most of the existing applications of public-key cryptography currently in use are based on the
presumed hardness of the discrete-log and the integer-factorization problems. Unfortunately, it is
well known that a technological breakthrough, such as the construction of a quantum computer,
could call into question the difficulty of these problems, as demonstrated by Shor [23], and
render all the existing protocols based on these problems completely insecure. A natural way
of addressing this problem is to build provably secure protocols based on mathematical problems
that are unrelated to factoring and discrete log and that could remain secure even in the presence
of quantum computers. One of the most promising directions in this line of research is to use
lattice problems as a source of computational hardness – in particular since they also offer features
that other alternative public-key cryptosystems (such as MQ-based, code-based or hash-based
schemes) cannot provide.

Despite great progress in the field over the last several years, efficiency still remains a very
large obstacle for advanced lattice primitives. While constructions of identity-based encryption
schemes, group signature schemes, functional encryption schemes, and even fully-homomorphic
encryption schemes are known, the efficiency of their implementations remains an issue. It is
safe to surmise that if the state of affairs remains as it is in the present, then despite all the
theoretical efforts that went into their constructions, these schemes will never be used in practical
applications.

Functional encryption. Functional encryption (FE) [10, 21] is a generalization of the notion
of public-key encryption, which allows fine-grained access control over encrypted data. Besides
the classical encryption and decryption procedures, functional encryption schemes consists of
a key derivation algorithm, which allows the owner of a master secret key to derive keys with
more restricted capabilities. These derived keys skf are called functional decryption keys and
are associated with a function f . Using the key skf for the decryption of a ciphertext Enc(x)
generates the output f(x). During this decryption procedure no more information is revealed
about the underlying plaintext than f(x).

The standard security requirement for both FE and MIFE imposes that decryption keys should
be collusion resistant. This means that a group of users, holding different decryption keys, should
not be able to gain information about the encrypted messages, beyond the union of what they
can individually learn. More precisely, an adversary that obtains the secret keys corresponding
to functions f1, . . . , fn should not be able to decide which of the challenge messages x0, x1 was
encrypted, as long as fi(x0) = fi(x1) for all i. This models the idea that an individual’s messages
are still secure even if an arbitrary number of other users of the system collude against that user.

Several FE schemes for general functionalities have already been proposed [18, 11, 24, 19]. Unfor-
tunately, they are far from being practical and their security relies on unstable assumptions, such
as indistinguishable obfuscation or multilinear maps. In order to overcome the deficiency of these
schemes, Abdalla et al. [1] focused on the construction of FE schemes for specific functionalities
of practical interest. In particular, they proposed simple FE schemes for the inner-product func-
tionality based on standard assumptions, such as the Decisional Diffie-Hellman (DDH) and the
Learning-With-Errors (LWE) assumptions (see Section 2). Following their work, several other
practical FE schemes for inner products [9, 15, 5] and their quadratic extensions [8] have been
proposed.

Multi-input functional encryption. The basic notion of functional encryption considers
functionalities where all the inputs are provided and encrypted by a single party. The more
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general case of multi-input functionalities is captured by the notion of multi-input functional
encryption (MIFE, for short) [20]. Informally, this notion can be thought of as an FE scheme
where n encryption slots are explicitly given, in the sense that a user who is assigned the i-th
slot can, independently, create a ciphertext Enc(xi) from his own plaintext xi. Given ciphertexts
Enc(x1), . . . ,Enc(xn), one can use a secret key skf to retrieve f(x1, . . . , xn), similarly to the basic
FE notion. This multi-input capability makes MIFE particularly well suited for many real life
scenarios (such as data mining over encrypted data or multi-client delegation of computation)
where the (encrypted) data may come from different and unrelated sources.

In the last few years, several multi-input functional encryption schemes have been constructed.
The vast majority, however, are impractical and based on unstable assumptions, such as indis-
tinguishable obfuscation or multilinear maps (e.g., [20, 7, 6, 12]).

The first practical construction of a MIFE scheme was proposed by Abdalla et al. in [4], by
focusing on the inner-product functionality. Their construction, however, works over bilinear
groups and cannot be instantiated with lattices. Their result was later extended by Chotard et
al. in [14], which additionally considered the problem of decentralization.

1.1 Purpose of the Document

The primary goal of this deliverable is to describe our contributions to the design of practical
quantum-safe functional encryption schemes within the FENTEC project. Towards this goal, we
present a new MIFE construction by Abdalla, Catalano, Fiore, Gay, and Ursu [3], which over-
comes the shortcomings of the original MIFE construction by Abdalla et al. in [4]. More precisely,
the MIFE construction in [3] is generic, in the sense that it can transform any single-input FE
that satisfies some structural properties into a multi-input FE, under the same assumption. In
particular, by using previous known single-input FE schemes for the inner product functionality
that are based on lattice problems, such as Learning With Errors (LWE), we obtain the first
quantum-safe MIFE scheme for inner products.

1.2 Structure and Methodology

Section 2 first recalls some of the definitions and basic tools that are used in the remainder
of the document, such as notations, complexity assumptions, and security definitions for multi-
input functional encryption. Section 3 then describes our main contribution, which is the generic
construction of multi-input functional inner-product encryption from a single-input functional
inner-product encryption. Next, Section 4 describes two concrete quantum-safe single-input FE
schemes that be used to instantiate the generic construction in Section 3, one by Agrawal et
al. [5] and one by Abdalla et al. [2]. Finally, Section 5 concludes by discussing future research
directions.

1.3 Relation to Deliverable 4.1

The scheme multi-input functional inner-product encryption was already described in Deliverable
4.1, since it is applicable to the web analytics use case considered in WP7. In comparison to that
deliverable, the current deliverable provides more details about the actual construction and its
possible instantiations.
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2 Basic tools

In this section, we recall some of the definitions and basic tools that will be used in the remainder
of the document.

2.1 Notation and conventions

We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT) algorithm A
is a randomized algorithm for which there exists a polynomial p(·) such that for every input x the
running time of A(x) is bounded by p(|x|). We say that a function ε : N→ R+ is negligible if for
every positive polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ). If S is

a set, x
R← S denotes the process of selecting x uniformly at random in S. If A is a probabilistic

algorithm, y
R← A(·) denotes the process of running A on some appropriate input and assigning

its output to y. For a positive integer n, we denote by [n] the set {1, . . . , n}. We denote vectors
x = (xi) and matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp. |x|) denotes its
cardinality (resp. number of entries). Also, given two vectors x and x′ we denote by x‖x′ their
concatenation. By ≡, we denote the equality of statistical distributions, and for any ε > 0, we
denote by ≈ε the ε-statistical difference of two distributions.

In the technical overview in Section 3.1, we use implicit representation of group elements as
introduced in [17]. That is, if G is a group of order p and g a generator, then ∀a ∈ Zp, we note
[a] = ga. If A ∈ Zm×np is a matrix, then [A] = (gai,j )1≤i≤m,1≤j≤n.

2.2 Learning With Errors (LWE)

Since this report only considers quantum-safe schemes, we now recall the Learning-With-Errors
(LWE) complexity assumption used in some of these schemes.

Definition 1 (Learning With Errors (LWE) assumption) Let q, α,m be functions of a pa-

rameter n. For a secret s ∈ Znq , the distribution Aq,α,s over Znq×Zq is obtained by sampling a
R← Znq

and an error e
R← ψZ,α,q from an error distribution ψZ,α,q, and returning (a, 〈a, s〉+e) ∈ Zn+1

q . Let

U(Zm×(n+1)
q ) denote the uniform distribution over Zm×(n+1)

q . The Learning With Errors problem

LWEq,α,m is as follows: For s
R← Znq , the goal is to distinguish between the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,α,s)

m.

We say that a PPT algorithm A solves the LWEq,α,m problem if it distinguishes D0(s) and D1(s)
(with non-negligible advantage over the random coins of A and the randomness of the samples)
with non-negligible probability over the randomness of s. The LWE assumption states that no
such adversary exists.

2.3 Multi-Input Functional Encryption

We now recall the definitions of multi-input functional encryption [20] specialized to the private-
key setting, as this is the one relevant for the constructions in this report.
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Definition 2 (Multi-input Functional Encryption) Let F = {Fn}n∈N be an ensemble where
each Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1×. . .×Xn →
Y. A multi-input functional encryption schemeMIFE for F consists of the following algorithms:

• Setup(1λ,Fn) takes as input the security parameter λ and a description of Fn ∈ F , and
outputs a master public key pk1 and a master secret key msk. The master public key pk is
assumed to be part of the input of all the remaining algorithms.

• Enc(msk, i,xi) takes as input the master secret key msk, an index i ∈ [n], and a message
xi ∈ Xi, and it outputs a ciphertext ct. Each ciphertext is assumed to be associated with an
index i denoting for which slot this ciphertext can be used for. When n = 1, the input i is
omitted.

• KeyGen(msk, f) takes as input the master secret key msk and a function f ∈ Fn, and it
outputs a decryption key skf .

• Dec(skf , ct1, . . . , ctn) takes as input a decryption key skf for function f and n ciphertexts,
and it outputs a value y ∈ Y.

Correctness. A scheme MIFE as defined above is correct if for all n ∈ N, f ∈ Fn and all
xi ∈ Xi for 1 ≤ i ≤ n, we have

Pr

[
(pk,msk)← Setup(1λ,Fn); skf ← KeyGen(msk, f);

Dec(skf ,Enc(msk, 1,x1), . . . ,Enc(msk, n,xn)) = f(x1, . . . ,xn)

]
= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

Security. In order to define the security of multi-input functional encryption schemes, we con-
sider several security experiments depending on whether the adversary can ask one or many
encryption queries and on whether it can has to choose the input on which it wishes to be chal-
lenged adaptively or at the very beginning of the experiment. These are denoted xx-AD-IND and
xx-SEL-IND, where: xx ∈{one, many}.
In the following, we first provide the definition of adaptive security under chosen-plaintext attacks
(xx-AD-IND) followed by the definition of selective security under chosen-plaintext attacks (xx-
SEL-IND).

one-AD-IND and many-AD-IND security experiments. For every multi-input functional
encryption MIFE for F , every stateful adversary A, every security parameter λ ∈ N, and every
xx ∈{one, many}, we define the following experiments for β ∈ {0, 1}:

Experiment xx-AD-INDMIFEβ (1λ,A):

(pk,msk)← Setup(1λ,Fn)
α← AKeyGen(msk,·),Enc(·,·,·) (pk)
Output: α

where Enc is an oracle that on input (i,x0
i ,x

1
i ) outputs Enc(msk, i,xβi ). Also, A is restricted to

only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . ,xjn,0n ) = f(xj1,11 , . . . ,xjn,1n )

1In the private key setting, we think of pk as some public parameters common to all algorithms.
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for all j1, . . . , jn ∈ [Q1] × · · · × [Qn], where for all i ∈ [n], Qi denotes the number of encryption
queries for input slot i. We denote by Qf the number of key queries. Moreover, for all i ∈ [n],
Qi > 0. When xx = one, Qi = 1, for all i ∈ [n].

Definition 3 (xx-AD-IND-secure MIFE) For every xx ∈ {one,many}, a private-key multi-
input functional encryption MIFE for F is xx-AD-IND-secure if every PPT adversary A has
advantage negligible in λ, where the advantage is defined as:

Advxx-AD-IND
MIFE (λ,A) =∣∣Pr
[
xx-AD-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-INDMIFE1 (1λ,A) = 1

]∣∣
one-SEL-IND and many-SEL-IND security experiments. For every multi-input functional
encryption MIFE for F , every stateful adversary A, every security parameter λ ∈ N, and every
xx ∈ {one,many}, we define the following experiments for β ∈ {0, 1}:

Experiment xx-SEL-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(pk,msk)← Setup(1λ,Fn)

ctji := Enc(msk,xj,βi )

α← AKeyGen(msk,·)
(
pk, {ctji}i∈[n],j∈[Qi]

)
Output: α

where A is restricted to only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . ,xjn,0n ) = f(xj1,11 , . . . ,xjn,1n )

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn]. When xx = one, we also require that Qi = 1, for all i ∈ [n].

Definition 4 (xx-SEL-IND-secure MIFE) A MIFE for F is xx-SEL-IND-secure if every
PPT adversary A has negligible advantage in λ, where the advantage is defined as:

Advxx-SEL-IND
MIFE,A (λ) =∣∣Pr

[
xx-SEL-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-INDMIFE1 (1λ,A) = 1

]∣∣.
2.4 Inner-product functionality

In this report, we describe schemes that support the following two variants of the multi-input
inner-product functionality:

Multi-Input Inner Products over ZL. This is a family of functions that is defined as FmL,n =
{fy1,...,yn : (ZmL )n → ZL, for yi ∈ ZmL } where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 mod L.

Multi-Input Bounded-Norm Inner Products over Z. This is defined as Fm,X,Yn =
{fy1,...,yn : (Zm)n → Z} where fy1,...,yn(x1, . . . ,xn) is the same as above except that the result
is not reduced modL, and vectors are required to satisfy the following bounds: ‖x‖∞ < X,
‖y‖∞ < Y .
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3 Quantum-Safe Multi-Input Functional Encryption

In this section, we recall the multi-input functional encryption (MIFE) schemes proposed by Ab-
dalla et al. in [3] for the inner-product functionality. The two constructions in [3] are generic,
building a MIFE for inner-product functionality starting from any single-input FE (Setup,Enc,
KeyGen,Dec) for the same functionality. While the first one addresses FE schemes that compute
the inner-product functionality over a finite ring ZL for some integer L, the second transforma-
tion addresses FE schemes for bounded-norm inner products. The two constructions are almost
the same, and the only difference is that in the case of bounded-norm inner products, addi-
tional structural properties on the single-input FE are required. The main idea behind both
constructions is to first build a simple MIFE scheme with unconditional one-time security and
then use single-input FE in order to bootstrap the information-theoretic MIFE from one-time to
many-time security.

Before proceeding with the actual description of the scheme, we provide a technical overview of
the MIFE construction by Abdalla et al. [4] in Section 3.1.

3.1 Overview of the MIFE construction by Abdalla et al. [4]

To better understand the constructions in [3], let us first explain the basic idea behind the MIFE
scheme by Abdalla et al. [4]. Informally, the latter builds upon a clever two-step decryption
blueprint. The ciphertexts ct1 = Enc(x1), . . . , ctn = Enc(xn) (corresponding to slots 1, . . . , n)
are all created using different instances of a single-input FE. Decryption is performed in two
stages. One first decrypts each single cti separately using the secret key skyi of the underlying
single-input FE, and then the outputs of these decryptions are added up to get the final result.

The main technical challenge of this approach is that the stage one of the above decryption
algorithm leaks information on each partial inner product 〈xi,yi〉. To avoid this leakage, their
idea is to let source i encrypt its plaintext vector xi augmented with some fixed (random) value
ui, which is part of the secret key. Moreover, skyi are built by running the single-input FE key
generation algorithm on input yi||r, i.e., the vector yi augmented with fresh randomness r.

By these modifications, stage-one decryption then consists of using pairings to compute the
values2 [〈xi,yi〉+ uir]T for every slot i. From these quantities, the result [〈x,y〉]T is obtained as

n∏
i=1

[〈xi,yi〉+ uir]T · [−(

n∑
i=1

ui)r]T ,

which can be easily computed if [−(
∑n

i=1 ui)r]T is included in the secret key.

Intuitively, the scheme is secure as the quantities [uir]T are all pseudorandom (under the DDH
assumption) and thus hide all the partial information [〈xi,yi〉+ uir]T may leak. Notice that, in
order for this argument to go through, it is crucial that the quantities [〈xi,yi〉 + uir]T are all
encoded in the exponent, and thus decoding is possible only for small norm exponents. Further-
more, this technique seems to inherently require pairings, as both ui and r have to remain hidden
while allowing to compute an encoding of their product at decryption time.

Abdalla et al. [3] overcome these difficulties via a new FE to MIFE transform, which manages to
avoid leakage in a much simpler and efficient way. The transformation works in two steps. First,

2Here we implicitly adopt the bracket notation from [17] (see Section 2.1).
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it considers a simplified scheme where only one ciphertext query is allowed and messages live in
the ring ZL, for some integer L. In this setting, it builds the following multi-input scheme. For
each slot i the (master) secret key for slot i consists of one random vector ui ∈ ZmL . Encrypting
xi merely consists in computing ci = xi+ui mod L. The secret key for function y = (y1, . . . ,yn),
is just zy =

∑n
i=1〈ui,yi〉 mod L. To decrypt, one computes

〈x,y〉 mod L = 〈(c1, . . . , cn),y〉 − zy mod L

Security comes from the fact that, if only one ciphertext query is allowed, the above can be seen
as the functional encryption equivalent of the one-time pad.

Next, to guarantee security in the more challenging setting where many ciphertext queries are
allowed, the scheme just adds a layer of (functional) encryption on top of the above one-time
encryption. More specifically, it encrypts each ci using a FE (supporting inner products) that is
both linearly homomorphic and whose message space is compatible with L. So, given ciphertexts
{cti = Enc(ci)} and secret key sky = ({skyi}i, zy), one can first obtain {〈ci,yi〉 = Dec(cti, skyi)},
and then extract the result as 〈x,y〉 =

∑n
i=1〈ci,yi〉 − 〈u,y〉.

The transformation actually comes in two flavors: the first one addresses the case where the
underlying FE computes inner products over some finite ring ZL; the second one instead considers
FE schemes that compute bounded-norm inner products over the integers. In both cases the
transformations are generic enough to be instantiated with known single-input FE schemes for
inner products. Moreover, the proposed transform is security-preserving in the sense that, if the
underlying FE achieves adaptive security, so does our resulting MIFE.

3.2 Information-Theoretic MIFE with One-Time Security

Figure 1 describes the multi-input schemeMIFEot for the class FmL,n. As shown in [3], this scheme
can be easily shown to achieve unconditional one-time security (i.e., one-AD-IND security).

Setupot(1λ,FmL,n):

For all i ∈ [n], ui
R← ZmL

Return u = {ui}i∈[n]

Encot(u, i,xi):

Return xi + ui mod L

KeyGenot(u,y1‖ · · · ‖yn):

Return z :=
∑

i∈[n]〈ui,yi〉 mod L

Decot
(
z, ct1, . . . , ctn):

Return
∑n

i=1〈cti,yi〉 − z mod L

Figure 1: Private-key, information theoretically secure, multi-input FE scheme MIFEot =
(Setupot,Encot,KeyGenot,Decot) for the class FmL,n [3].

3.3 Multi-Input Inner Products over ZL

Figure 2 presents the multi-input scheme MIFE for the class FmL,n from [3]. The construction

relies on the one-time scheme MIFEot in Figure 1, and any single-input FE for the class FmL,1.

Correctness. The correctness of MIFE follows from the correctness properties of the single-
input scheme FE and the multi-input scheme MIFEot. More precisely, the correctness of
the single-input scheme FE first implies that, for all input slots i ∈ [n], Di = 〈wi,yi〉 mod
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Setup′(1λ,FmL,n):

u← Setupot(1λ,FmL,n), for all i ∈ [n], (pki,mski)← Setup(1λ,FmL,1)
(pk,msk) :=

(
{pki}i∈[n], ({mski, }i∈[n],u)

)
Return (pk,msk)

Enc′(msk, i,xi):

wi := Encot(u, i,xi)
Return Enc(mski,wi)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z := KeyGenot(u,y1‖ · · · ‖yn)
sky1‖···‖yn

:=
(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], Di ← Dec(ski, cti)
Return

∑
i∈[n]Di − z mod L

Figure 2: Private-key multi-input FE schemeMIFE := (Setup′,Enc′,KeyGen′,Dec′) for the class
FmL,n from a public-key single-input FE FE := (Setup,Enc,KeyGen,Dec) for the class FmL,1, and

one-time multi-input FE MIFEot = (Setupot,Encot,KeyGenot,Decot) for the class FmL,n [3].

L. Next, the correctness of MIFEot implies that
∑

i∈[n]Di − z = Decot(z,w1, . . . ,wn) =∑
i∈[n]〈xi,yi〉 mod L.

Security. The security ofMIFE follows from the following theorem, whose proof is given in [3]:

Theorem 1 If the single-input FE, FE is many-AD-IND-secure, and the multi-input scheme
MIFEot is one-AD-IND-secure, then the multi-input FE, MIFE, described in Figure 2, is
many-AD-IND-secure.

Instantiations. The construction in Figure 2 can be instantiated using the single-input LWE-
based FE scheme of Agrawal, Libert, and Stehlé [5, Section 4.2] that is many-AD-IND-secure and
allows for computing inner products over a finite ring. This results in a MIFE for inner products
over Zp for a prime p, based on the LWE assumption. As the scheme in [5], the resulting MIFE
scheme has a stateful key generation. A stateless MIFE instantiation can be obtained from the
transformation in the next section.

Another possible instantiation is to use the single-input LWE-based FE scheme of Abdalla et al.
[1].

3.4 Multi-Input Inner Products over Z

Figure 3 presents a multi-input scheme MIFE in [3] for the class Fm,X,Yn from the one-time
scheme MIFEot of Figure 1, and a (single-input) scheme FE for the class Fm,3X,Y1 . For the
transformation to work, FE is required to satisfy two properties. The first one, called two-step
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Setup′(1λ,Fm,X,Yn ):

u← Setupot(1λ,FmL,n), for all i ∈ [n], (pki,mski)← Setup?(1λ,Fm,3X,Y1 , 1n)

(pk,msk) :=
(
{pki}i∈[n], ({mski, }i∈[n],u)

)
Return (pk,msk)

Enc′(msk, i,xi):

wi := Encot(u, i,xi)
Return Enc(mski,wi)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z ← KeyGenot(u,y1‖ · · · ‖yn)
sky1‖···‖yn

:=
(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], E(〈xi + ui,yi〉 mod L, noisei)← Dec1(ski, cti)
Return Dec2

(
E(〈x1 + u1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈xn + un,yn〉 mod L, noisen) ◦

E(−z, 0)
)

Figure 3: Private-key multi-input FE scheme MIFE = (Setup′,Enc′,KeyGen′,Dec′) for the class
Fm,X,Yn from public-key single-input FE scheme FE = (Setup,Enc,KeyGen,Dec) for the class
Fm,X,Y1 and one-time multi-input FE MIFEot = (Setupot,Encot,KeyGenot,Decot) [3].

decryption, intuitively says that the FE decryption algorithm works in two steps: the first step
uses the secret key to output an encoding of the result, while the second step returns the actual
result 〈x,y〉 provided that the bounds ‖x‖∞ < X, ‖y‖∞ < Y hold. The second property, called
linear encryption, informally says that the FE encryption algorithm is additively homomorphic.

Correctness. As shown in [3], the correctness of the scheme MIFE follows from (i) the cor-
rectness and the two-step decryption property of the single-input FE scheme, and (ii) from the
correctness of MIFEot and the linear property of its decryption algorithm Decot.

Security. As the following theorem from [3] shows, the security of theMIFE scheme in Figure 3
follows from the security of the underlying single-input FE scheme and that of the one-time scheme
MIFEot.

Theorem 2 Assume that the single-input FE is many-AD-IND-secure and the multi-input FE
MIFEot is one-AD-IND-secure. Then the multi-input FEMIFE in Figure 3 is many-AD-IND-
secure.

Instantiations. In [3], the authors show that the two additional properties are satisfied by the
many-AD-IND secure FE schemes of Agrawal, Libert and Stehlé [5]. As a result, by instantiating
the above construction with their LWE-based single-input FE scheme and recalled in Section 4.1,
one can obtain a quantum-safe MIFE scheme for bounded-norm inner products based on LWE. In
addition, the decryption algorithm of the resulting scheme also works efficiently for large outputs.
This stands in contrast to the previous result [4], where decryption requires to extract discrete
logarithms.
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4 LWE Instantiations

In this section, we recall the description of two LWE-based (single-input) FE schemes which can
be used to instantiate the MIFE schemes in Section 3.The first one is by Agrawal et al. [5, Section
4.1] and the second one is by Abdalla et al. [2].

4.1 Inner-product functional encryption from [5]

The many-AD-IND secure Inner-Product FE by Agrawal et al. [5, Section 4.1] is recalled in Fig. 4.
The proof that it satisfies the two-step decryption and the linear encryption properties can be
found in [3].

Setup(1λ,Fm,X,Y1 ):

Let N = N(λ), and set integers M, q ≥ 2, real α ∈ (0, 1), and distribution D over

Zm×M as explained in [5]; set K := m ·X · Y , A
R← ZM×Nq , Z

R← D, U := ZA ∈ Zm×Nq ,
pk := (K,A,U), msk := Z.
Return (pk,msk)

Enc(pk,x ∈ Zm):

s
R← ZNq , e0

R← DM
Z,αq, e1

R← Dm
Z,αq

c0 := As + e0 ∈ ZMq
c1 := Us + e1 + x ·

⌊ q
K

⌋
∈ Zmq

Return ctx := (c0, c1)

KeyGen(msk,y ∈ Zm):

Return sky :=

(
Z>y

y

)
∈ ZM+m

Dec
(
sky, ctx):

µ′ :=

(
c0
c1

)>
sky mod q.

Return µ ∈ {−K + 1, . . . ,K − 1} that minimizes
∣∣b qK cµ− µ′∣∣.

Figure 4: Functional encryption scheme by Agrawal et al. [5] for the class Fm,X,Y1 based on the
LWE assumption.

4.2 Inner-product functional encryption from [2]

The inner-product FE scheme by Abdalla, Bourse, De Caro, and Pointcheval in [2] is an extension
of inner-product FE construction in [1]. It achieves adaptive security and has instantiations based
on the ElGamal (plain DDH assumption) [16], Paillier/BCP (DCR assumption) [13], and Regev
(LWE assumption) [22] encryption schemes.

Fig. 5 describes the instantiation based on the Regev encryption scheme [22]. The proof that it
satisfies the two-step decryption and linear encryption properties is similar to the one for the [5]
scheme given in [3].
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Setup(1λ,Fm,X,Y1 ):

Let n,m, p, q be integer parameters
Let σ a positive real parameter such that they verify the conditions required
Let A

R← Zm×nq be a uniformly random matrix.
Set p = (λ, `, n,m, p, q,A)

Sample (s0, e0)
R← Znq × χmγ0

Sample b0 ← As0 + e0 ∈ Zmq
For all i ∈ [`], set (ti, si, ei)

R← {0, . . . , T} × Znq × χmσ
For all i ∈ [`], set bi ← A(ti · s0 + si) + ei ∈ Zmq
msk = (si, ti)i∈[`]
pk = (b0,bi)i∈[`]
Return (pk,msk)

Enc(pk,x ∈Mx):

Pick r
R← {0, 1}m

Set ct0 ← Aᵀr ∈ Znq
Set ct1 ← bᵀ

0r ∈ Zq
For all i ∈ [`], ct2,i ← bᵀ

i r + t(xi) ∈ Zq , where t(v) = v · bq/pc ∈ Zq.
Return ctx = (ct0, ct1, (ct2,i)i∈[`])

KeyGen(msk,y ∈My):

Set sy ←
∑

i∈[`] yisi ∈ Znq
Set ty ←

∑
i∈[`] yiti ∈ Z

Return sky = (sy, ty)

Dec
(
sky, ctx):

Set ct〈x,y〉 ←
∑

i∈[`] yict2,i − tyct1 − ctᵀ0sky ∈ Zq.
Return the plaintext m, where m is such that d− t(m) ∈ Zq is closest to 0 mod q.

Figure 5: Functional encryption scheme by Abdalla et al. [2] for the class Fm,X,Y1 based on the
LWE assumption.

According to [2], the message space is Mx = {0, . . . ,Mx} ⊆ Zp for some integer Mx and prime
p > `MxMy. T = {0, . . . , T}`, where T is set according to the security properties needed.
T/Mx super-polynomial is needed for security against polynomially bounded adversaries, T/Mx

exponential provides security against sub-exponentially bounded adversaries, where Mx is the
biggest possible coordinate of any vector in Mx.

In order for the proof of security to carry through, as well as the correctness, the following
properties on the parameters have to be verified:

1. m ≥ (n+ `+ 2) log q + 2 log 1
ε + Ω(1) ;

2. T = Mx · λω(1) ;

3. σ ≥ (1 + T
√
`)σ′ ;

4. γ0 >

√
ln(2`(1+1/ε))

π ;
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5. σ′q > 2
√
n ;

6. p > `MxMy ;

7. q
2p > σM2

y `
√

2mλ .
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5 Conclusion

In this document, we described the first specifications of quantum-safe functional encryption
developed in the context of the FENTEC project. In particular, the new multi-input functional
encryption construction for the inner-product functionality described in Section 3 was the first
such scheme based on lattice problems and capable of handling inputs of arbitrary size. In
addition to the quantum-safe instantiations in Section 4, we remark that other instantiations are
also possible such as the LWE-based scheme by Abdalla et al. [1].

However, as stated in Deliverable 4.1, the use of a central authority in multi-input functional
encryption schemes can make them not suitable for certain applications, such as the web analytics
use case considered in WP7. Hence, an important open problem is to design a decentralized
version of such schemes based on lattices. We currently have some preliminary results in this
direction and we expect to be able to present in next corresponding deliverable for the second
year of the project.
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